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1. Introduction

A goal that many researchers in automated teaching would like to achieve

is the development of branching procedures or designs of teaching programs

that would, in some sense be best tailored to the needs of the individual

student. This paper is concerned essentially with giving theoretical

foundations in terms of statistical decision theory to the pursuit of that

goal which for the most part has enjoyed the status of a nice but vague idea.

Several alternative design problems are formulated in this paper and a general

technique for solution for best designs is outlined and illustrated.

The design problem for automated teaching programs or experiments is

attacked in this paper from the standpoint of the theory of the sequential

design of experiments. This seemed to be an especially interesting way to

look at the design of automated teaching experiments since the use of a high-

speed computer in conducting these experiments provides at least the possibility

of making rapid calculations about whether a teaching experiment should be con-

tinued, and if so what type of item should be presented at the next trial.

Part 2 of this report is devoted to outlining the general theory of the

sequential design of experiments and the use of Bayesian procedures for determin-

ing best designs. Sequential experimentation in general is distinguished from

fixed sample-size experimentation in that explicit consideration is given in

sequential procedures to the cost of administering each subexperiment. In a

sequentially designed experiment, the strategies available to the statistician

- or experimenter are made up of three components: the choice of an experiment,
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the choice of a sampling plan, and the choice of a terminal decision function.

In designing an automated teaching program these three components of a strategy

respectively may be interpreted as: the choice of a rule for deciding what

sequence of items shall be administered based on earlier item administrations

and responses, the determination of the conditions under which the teaching

experiment should be stopped for a student based on the set of possible out-

comes of an experiment, and the determination of just what conclusion should

be reached about the student's mastery of concepts at the termination of the

program.

An effort was bcguin by Dear and Atkinson [ii to examine the branching

problem in automated teaching by formulating a mathematical model of a teaching

situation and then, within the framework of this model, mathematically searching

for the best branching rule in a certain sense in a broad class of branching

rules. A rather simple two-concept teaching situation was considered in this

study in order to allow us to get some insight into the structure of these

branching problems without being overwhelmed by the details that a mathematical

representation of many current automated teaching programs would necessitate.

This two-concept teaching model was formulated in terms of the stimulus-

sampling mathematical learning theory which was originally developed by Estes

and is currently being widely applied and extended by many researchers. Two

concepts labeled A and B were considered in our previous study and sets of

equivalent items which embodied these concepts were assumed available for

presentation at each trial. This two-concept model will be examined further in

this paper since it is a sufficiently rich basis for study of the sequential
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design problems which are to be considered here and it will quite well account

for the results of a number of interesting learning studies that have been

carried out.

Part 3 of this paper is devoted to a fairly detailed review of the

foundations of stimulus sampling learning theory for the purpose of introducing

the features of that theory which are needed to characterize a sequentially

designed stimulus sampling teaching experiment and to identify certain para-

meters of these models which could lead to a number of different statistical

decision problems. In Part 4, a number of alternative sequential design

problems are developed in terms of several different Ldentifications of states

of nature or parameters of the relevant probability distributions, several

different objective functions, and several alternative ways of expressing

losses incurred by terminal decisions. The point is emphasized in Part 4 that

solutions for best sequential designs of teaching experiments have the difficult

complication over many current sequential design problems that the probability

distributions on the sample spaces of these teaching experiments cannot be

simply broken down over trials into independently distributed marginal

components.

The technique of solution for best sequential designs of experiments

called "backward induction" is outlined in Part 5. Solutions for best designs

in several miniature 3-trial teaching experiments using this technique are then

illustrated. The paper concludes, Part6, with a discussion of characteristics

that models of teaching processes need to have in order to be accessible to

computation for best designs in full-scale teaching programs even when the
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backward induction technique is applied. The critical importance of coarse,

sufficient partitions of the sample space of the teaching models is emphasized.

4i
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2. Outline of the Theory of the Sequential Design of Experiments

Sequential experimentation is a mode of carrying out statistical experi-

ments by performing a sequence of subexperiments with the possibi.lity that

experimentation may be stopped at any point in the sequence and a terminal deci-

sion is thcn made at that stopping point. The theory of sequential analysis

of experiments, many of whose early developments are due to Wald [22], is

usually considered to refer to the situation where the identical subexperiment

is repeated independently at the various points in the sample sequence. The

extension of sequential theory to allow the possibility of selecting from a

set of different subexperiments at each point in the experimental sequence is

the distinguishing feature of the theory of the sequential design of experiments.

In addition to Wald's pioneering book [22], two general references are

now available which give detailed consideration to various aspects of the theory

of sequential experimentation. Blackwell and Girshick [4] present the founda-

tions of sequential experimentation and they consider methods of solution for

best sequential strategies in a number of specific situations; however, for

the most part, these authors do not deal with the sequential design problem as

they deliberately avoid the complication of sequential theory that the order

in which subexperiments are performed may be important. In sequential games

involving teaching or learning experiments one will, of course, expect the

order of experimentation to be important. Raiffa and Schlaifer [18] consider

a more general representation of sequential theory which does incorporate the

possibility of performing different subexperiments at the various points in an

experimental sequence. In the applications of this theory that these authors



9 April 1963 6 TM-1161/O00/O0

then consider, they, too, take up only cases of independently distributed out-

comes of the subexperiments.

A number of specialized papers on the sequential design of experiments

have appeared in the literature. The so-called "two-armed bandit" problem and

generalizations of' this problem are the subject of several papers; Robbins [19],

Bradt and Karlin [6] and Bradt, Johnson, and Karlin [73. Chernoff [91 and

Albert [(1 have considered some hypothesis-testing problems from the standpoint

of sequential design of experiments. DeGroot [12] has examined sequential

design problems in terms of various measures of information in an experiment.

The design problems which Raiffa [17] has considered in his study of item

selection procedures are, in terms of the subject of study, perhaps the most

similar to the design problems in teaching experiments of any sequential design

problems which have appeared. Raiffa considers both sequential and non-sequential

experiments in this study which deals with the selection of items to develop

psychometric tests and medical diagnosis procedures; however, in this study too,

the outcomes of the subexperiments are assumed to be independently distributed.

An outline of the general structure of sequential statistical games will

be sketched in the remaining sections of Part 2. For further detailed infor-

mation about various aspects of the theory of statistical games, one may wish

to consult in addition to the general references which have been mentioned,

books such as the following: re game theory, Luce and Raiffa [15] and McKinsey

[16]; and concerning statistical decision theory at a more elementary level,

Chernoff and Moses [103 and Schlaifer [20 3.
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Strategies in Statistical Games

The principal objective involved in the solution of any game is the identi-

fication of a rule of play or strategy which is in some sense a "good" way to

play the game. Statistical game theory is primarily concerned with adapting

a special class of games called two-person, zero-sum games to statistical

decision problems. Under this adaptation, nature is represented as being one

of the players and the statistician or experimenter is viewed as the second

player.

To introduce some of the special design problems that arise in teaching

experiments, a simple urn game will be considered. Let U1 represent an urn

containing m1 white marbles and n1 black marbles and U2 be a second urn con-

taining m2 white marbles and n2 black. Two players agree to play the followirg

game using these two urns. Player 1 knows the identity of the two urns while

the contents of the urns are not visible to player 2. Player 1 presents the

two urns to player 2 in either the order (U1 ,U 2 ) or (U2 ,U 1 ) and player 2 is

required to guess which presentation order is used (one may interpret the

first position in this pair as the "urn on the left", UL, and the second

position as the "urn on the right," UR). If player 2 guesses correctly, player

1 will pay him k dollars while if player 2 guesses incorrectly he is to pay

player 1 k dollars.

Consequently, each play of the game results in an exchange of k dollars.

These exchanges may be represented by payoff functions. For example, the

payoffs that player 1 will receive from player 2 in this urn game are given

in the matrix shown below:
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Player 2's Choice

Player l's Choice (U 1,VU2 ) (U 2 , Ul )

(u,, u2 ) -k k

(U2 ,ul) k -k

This matrix gives all of the values of player l's payoff function, say

U1 , for each possible play of the game. This game is a zero-sum, two person

game since the payoff to player 2 is the negative of the payoff to player 1.

Thus letting U2 be player 2's payoff function, the values of this function are

given by the following matrix:

Player 2's Choice

Player l's Choice (uI, U2 ) (U2 ,Ul)

(U1IU 2 ) k -k

(U 2,U1) -k k

The two choices of orderings of the urns (U, U2) and (U 2,U) constitute

the pure strategies for playing this game for both player 1 and player 2. It

would not appear that therc is any' choice of a pure strategy for player 1 in this

game which in. :zonjunction with some choice of a pure strategy for player 2

results in a payoff which is a good compromise for both. Frequently, it is

necessary for one or both of the players to resort to using more complicated
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strategies called mixed strategies in order to obtain certain "good" ways to

play the game or "good solutions" of the game. Mixed strategies are formed

by defining a probability distribution over the set of pure strategies and

hence selecting a pure strategy by first operating a random device which

appropriately reflects the desired selection probabilities. The urn game

illustrated here and all of the games considered in the paper have the character-

istic that each of the two players has only a finite number of pure strategies.

A fundamental theorem for such finite games establishes that, when mixed

strategies are introduced, each player has at least one good strategy.

It can be shown for this urn game that if each of the two players inde-

pendently employs the mixture of selecting the configuration (UI,U 2 ) with

probability p = 1/2 that this mixed strategy is a good strategy for each

player. The expected payoff for either player using this strategy is then 0

dollars.

Consider next a modification of this game in which player 2 is allowed to

pay one dollar to player 1 and, in return for this fee, player 2 is permitted

to take a random draw of one marble from either of the two urns that player 1

presents. If player 2 decides not to pay the entry fee, he is still allowed

to guess which configuration obtains, as in the original game. The pure

strategies for this game and the payoffs to player 2 for each pair of choices

of pure strategies. are shown in the matrix which follows:

7-
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Player l's Strategy

Player 2's Strategy (u ,u2) (U2,ii1)

[u 1-(w,(tr,,u2),(B, (UlU2)] k-i -(k+l) 1
[UL,(W,(U2,Ul),( B,(TUl,U 2 ))] -(k+l)p(WU 1 )+(k-l)p(D!U91 (k-l)p(WjU 2 )-(k+l)p(BIU 2)

[UL,(W, (U2, Ul)), (B3,(,u -(mi-i) k-i

[UR,(W,(UlIU 2)), (B, (UI~U2))' k-i -(k+l)

[UR,(W,(U2 ,Ul)),(B,(U2,Ul))' -(k+i) k-i

(u1,u2) k -k

(u 2, U) -k k
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The notation for strategies involving experimentation, for example, consider

the strategy [UL, (W,(Ul, U2 )),(B,(U 2 ,Ul))], is interpreted--the lefthand urn UL

is to be selected for a random draw;then if a white marble is drawn, claim that

the correct configuration is (U ,U 2 ); while if a black marble is drawn, claim

the configuration to be (U2 1JU). Since random moves have now been introduced

into the game, one sees that the payoff for certain of the pairs of the pure

strategies for the two players must be expressed as expected values of the

payoffs over probability distributions on the random moves.

This second simple example of an urn game has served to introduce the main

characteristics of a sequential-design-of-experiments problem. The pure

strategies for player 2 are seen to involve three important features: (1) a

decision concerning how much experimentation should be done, (2) a choice of

which experiment should be performed and (3) the final decision concerning

what configuration of the urns that player 1 has presented. In more general

sequential design problems these three components of a pure strategy for

player 2 may be identified respectively as the choice of a sampling plan, the

choice of a sequence of subexperiments, and the choice of a terminal decision

function.

This urn game could be elaborated by allowing additional random draws by

player 2. Most of the sequential design problems that have been considered

in the literature have considered the situation where successive outcomes of

subexperiments are independently distributed. In these urn games, the inde-

pendence case would be effected by making the random draws with replacement.

The designs of teaching experiments which are considered in this paper,
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on the other hand, are more similar to strategies for urn games involving

sampling without replacement.

Normal Form of a Statistical Game

The descriptions of the two urn games have included all the necessary

ingredients to characterize a game in a mode called the normal form of a

statistical game. Let U be the set of all pure strategies for player 1, and

V be the set of pure strategies for player 2, and ý12 be player 2's payoff

function defined on the product set U ý V. The normal form of this game is the

triple, say, G = (U,VP 2 ). Since statistical games are zero-sum, two-person

games it is sufficient to specify either I12 or I1l in the triple to uniquely

define the game G.

When mixed strategies are empl6yed by each player, the sets of strategies

U and V may be expanded to include all possible mixtures of the elements of

each of these two sets. Let iT represent a mixed strategy for player 1 and

11 be the set of all his mixed strategies. Similarly, let 7 be a mixed strategy

for player 2 and H be the set of all of player 2's mixed strategies. One defines

the mixed extension of the game G to be the triple, say, r = (I,H,42).

Statistical games are often usefully represented in normal form to study

various conditions under which good solutions to the games exist, to examine

various relationships between certain classes of strategies, and to examine

other fundamental problems in statistical game theory. Frequently, another

equivalent representation of a statistical game called the extensive form is

more suitable for the purpose of actually finding specific solutions to
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statistical games. The characterization of the extensive form of a game will

be deferred to Part 5 of this report where it is used to obtain best designs

for several illustrative teaching experiments.

Sample Space of a Statistical Game

The features of a sequential-design-of-experiments problem which were

introduced in a rough, intuitive way through the description of the two simple

urn games will now be formalized in order to allow a general representation

of sequential-design-of-experiments problems. Since statistical games typi-

cally will involve the use of experiments by the statistician, it is desirable

to have a representation of all the possible outcomes of a statistical experi-

ment. Conventionally, all possible outcomes of a statistical experiment are

represented as a set, s a y Y, which is called the outcome space (or frequently

the sample space) of the experiment. The outcome space will be defined in

sequential design problems to be rich enough to include all possible experi-

ments of interest and all conceivable outcomes of each experiment. Although

the phrase "sample space of a statistical experiment" is often used synonymously

with "outcome space" it is also used to represent a triple, say, Z = (Y,,ýIp(. Ine)).

The components of this triple are the op.tcome space, Y, a set il of parameters or

indices of probability distributions which are defined on the outcomes of a

particular experiment e ,- Y, and a probability distribution on the outcomes of

a statistical experiment, pf.Ici~e),which is defined when a parameter point

m e and an experiment e C Y are specified.

Although this representation of the sample space will be suitable for the

d,:velopment of most sequential design problems, a number of alternative modes
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of representation of the sample space could be used. For example, one could

let Ye be the restriction of Y or the subset of Y consisting of all outcomes

to the experiment e. One can then define the conditional sample space given

the experiment e to be the triple Ze = (Y ,e1,p(.Iw). These conditional sample

spaces given a particular experiment e are the sample spaces considered in a

typical sequential analysis problem where it is necessary only to determine a

good sampling plan and a good terminal decision function. The important point

to note about either representation of the sample spaces Z or Z e, is that it

is necessary to specify both a parameter point w and an experiment e to define a

probability distribution on the outcome space. In situations where it is well

understood that a particular experiment is being employed, it is conventional

to delete the subscript e from the definition of the conditional sample space.

In order to simplify the description of a sequential game and the set of

possible experiments that a statistician could choose from in this game,

attention will be restricted to games which will continue for, at most, n steps

or trials. Such sequential games are called truncated sequential games.

The outcome space Y of a truncated teaching game will be a set of n-

dimensional sequences whose order is determined by the trial numbers. A

notation which will be used generally in this paper to represent sequences

and vectors is the employment of underlined lower case letters. Thus, for

example, a representative element of the outcome space Y will be indicated

as - = (yl, y 2, ... ,yn). The values yj represent the coordinates or components

ofy at trial j. The parameter spaces 1,which will be considerec will typi-

cally be multi-dimensional sets; consequently the elements of these sets or

parameter points will be similarly indicated, i.e., w
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The same type of notation will be used to designate experiments, com-

ponents of experiments or subexperiments, and the set of all experiments of

interest. Thus E shall be the set of all experiments of interest and the

elements of E will be denoted by e. Th-d6escription of an experiment in

terms of its component subexperiments requires a somewhat more elaborate

notational apparatus. One of the most convenient ways to describe an experi-

ment is through the geometrical concept of a particular type of connected

graph called a tree. For example, consider a sequential game truncated at

2 trials developed in terms of Bernoulli or binomial subexperiments. In a

situation involving 2 different binomial subexperiments e1 and e2 (in the urn

games considered earlier e1 could be the selection of the lefthand urn, ULL,

and e2 the selection of the righthand urn, UR), experiments such as the two

shown in Figure 1 are possible.

Experiments

e 2

Subexperiment at Trial 2 el e1  e2  e

Outcome at Trial 1 ye Ye1 y e1

Subexperiment at Trial 1 el

Figure 1
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The experiment e1 may be characterized by the rule that subexperiment el is

to be used at both trials hence the rule does not depend on any outcomes.

Experiment e 2 , on the other hand, does represent a rule which makes use of

the information about outcomes at the first trial of the experiment.

Sampling Plans and Terminal Decision Functions

A sequential statistical game is distinguished from a fixed sample size

or non-sequential game by the fact that sampling may terminate at any step

(perhaps without even starting experimentation). The rules which specify

when to continue and when to terminate sampling are usually called sampling

plans. Each sampling plan may be represented as a partition of the outcome

space Y into subsets called stopping regions.e

The stopping regions which comprise a sampling plan are required to be

cylinder sets of a particular type. Letting b represent a sampling plan,

B the set of all sampling plans and b. the stopping region for the ith step

in a sequential game, it shall be required that if y. and Yk are elements of

Ye and the values of the first i coordinates of Yk are equal to the correspond-

ing values of yj (one says in this case that y agrees with xk in the first

i coordinates), then yEb i if and only if Yk bi• The index i may range over

the set of integers 0,1,2,...,n; if i =0, one uses the definition that all

yEYe agree in the value of their 0th coordinate. Consequently, b is either

the entire set Y or the null set. A sampling plan b is then a sequence ofe

cyclinder sets b = (dbb l ,b 2 , ... ,b n) which partitions the outcome space Ye;

thus, given a sampling plan, one can tell for each yEY e the stopping region

in which y is an element.
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In every statistical decision problem, the ultimate goal is to make a

choice of one, among a set of alternative actions. In sequential games, this

set, say A, is referred to as the set of terminal actions. The choice of a

good experiment and a good sampling plan is made only to improve one's

basis for choosing a terminal action. Part of the statistician's strategy in

a sequential game is typically formulated as the choice of a terminal decision

function. For a sequential game truncated at n steps, one may define the set

In = (i: i = 0,1,2,...,n) as the set of possible stopping points. A ter-

minal decision function is then defined as a function d whose domain is the

product set In )( Y and whose range is the set of terminal actions A.ne

One also constrains the terminal decision functions by a requirement

that if two sample sequences y, and yk are elements of a stopping region bi

and these two sample sequences agree in the values of their first i coordinates,

then the terminal decision reached for the sequence X, must be the same as

the decision reached for yk; that is, d(i,y) = d(i,Yk) = a.

Cost Functions and Loss Functions

Explicit recognition is given in sequential game theory to the fact that

each additional subexperiment which is performed must in some sense be paid

for. The cost of experimentation in truncated sequential games is represented

by a non-negative, bounded function, say c, whose domain again is the product

set InX y ' A restriction similar to that imposed on the sampling plans and
e

the terminal decision functions is levied on the cost functions. Thus, if

,- and Yk arc. each elements of a stopping region bil, and yo and yk agree in
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the values of their first i coordinates, then it shall be required that

c(i,y.) = c(i,yk).

When the statistician finally stops sampling and decides upon a terminal

action a, then the return to him for making that final choice will also be

dependent on the values of the parameter point that nature has chosen. It is

customary in statistical games to express the consequences of the statistician's

terminal actions against each of the possible choices of a parameter point or

probability distribution as loss functions. A loss function in a statistical

game, say L, is defined to. be a non-negative, bounded function with domain,

the product set ilxA.

In general game theory, the consequences of a player's choices are usually

expressed in terms of the values of his utility functions. In statistical

games, the player's loss functions are defined to have as values, the negative

of the values of his utility functions.

Risk Function

In statistical games, the payoff to player 2 (the statistician or experi-

menter) is expressed in terms of the value of a function called the risk

function. For sequentially designed experiments, the risk function, say p,

when only pure strategies are used by both players is defined as follows:

n

=O+ cd(i,))](

iO Xebi
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Representation of a Sequentially Designed Statistical Game

One sees that the arguments of the payoff function P for the statistician

in a sequentially designed game are the pairs of strategies, o for nature and

(e,b,d) for the statistician. Thus, formally, these statistical games can be

described as the triple G = (Q,EyB XD,p) where the parameter set f represents

the set of pure strategies for nature; the set of pure strategies for the

statistician is the product set E-ABYD whose corfmlonents are the set of all

experiments E, the set of all sampling plans B, and the set of all terminal

decision functions D; and the risk function P is the statistician's payoff

function.

Bayes Principle and Bayes Risk

One of the principles that has enjoyed considerable acceptance among

statisticians as a means for determining a preference ordering on the set of

strategies available to the statistician is Bayes principle. This principle

asserts that the experimenter or statistician can designate a particular

probability distribution that nature is using over the set of parameter points

Sor pure strategies for nature on the basis of his previous experience and

background information available to him prior to the performance of any

experiments. An alternative payoff function applies for the statistician

when the Bayes principle is employed. This payoff function is called the

risk function against the probability distribution, say, T( over the parameter

set a. The risk function evaluated for the strategy (te,b, d) against n in a

sequential design problem is defined as follows:
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n

Pt, (eb~d))__ = 7 7-• 7'L• I [c(iy) + L --•d(i,'))1i--•n(Pf--o%"

i=o yebi _uefl

A Bayes solution to the design problem against A is a strategy which minimizes

the risk function pQ1, (e, bd))> The value of the risk function for a strategy

which represents such a Bayes solution is called the Bayes risk. (However,

frequently in the literature one will see any of the risk functions against

a distribution n referred to as Bayes risk functions.) The probability dis-

tributions v are called a priori or prior distributions on fl.

An important computational feature of Bayes procedure for finite

statistical games of the sort which characterize the teaching experiments

considered in the remainder of this paper is that it is sufficient to consider

only pure strategies for the statistician. It is easy to show that for these

kinds of problems that some pure strategy is at least as good as any mixture

of pure strategies for every prior distribution i. However, even though the

statistician has only a finite number of the pure strategies (e,b,d), the

total number of these strategies rapidly becomes so large with increasing

truncation trial number nthat solution for best strategies by sheer enumeration

of the values of P(r,(e,b,d)) isnot feasible.

The use of Bayes principle to define "bestness" for designs of teaching

programs would appear to be a particularly appropriate mechanism to give

substance to the notion of tailoring a teaching program to the needs of an

individual student. The definition of the Bayes risk incorporates the concept

that the design of a teaching program which is to be best for a game involving 4
the responses of individual students will be dependent not only on the parameter
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values w which govern the rate of the student's learning but will also be

dependent on how well the experimenter can identify the student's learning

capacity at the outset. The experimenter's probabilistic classification of

students into the various possible populations preliminary to the teaching

experiment, may be represented in the prior distributions.
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3. A Stimulus Sampling Teaching Model

It has been shown that in statistical games the moves and outcomes of

these games are described in terms of the sample space of a statistical ex-

periment. In Part 3, the sample space of a two-concept teaching maodel that is

essentially the same model which was developed by Dear and Atkinson [ 111 will

be described. However, it now seems apparent that more general experiments must

be considered to determine best sequential designs for teaching experiments

involving the sequence of responses of individual students than we considered

in that earlier paper. One pays the price of having substantially more difficult

probability distributions of responses to work with when the more extensive

set of possible experiments is considered.

It will be useful to review first the mathematical foundations of the

general stimulus sampling theory of learning in order to see how probability

distributions are built up in the sample spaces of these models. The special

assumptions that are involved in the single-element, two-concept teaching model

which provides the setting for these sequential design studies will then be

identified. Finally, the manner of constructing probability distributions on

the outcome sequences of these two-concept models from certain elementary

conditional probabilities and parameter values will be shown.

Mathematical Foundations of Stimulus Sampling Models

Estes and Suppes 114 1 have given a formal representation of the general

stimulus sampling theory for simple learning situations as an axiom system.

Since the model for teaching two related concepts that is being utilized here
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is a special and, in many respects, a very simple version of stimulus

sampling models, it will not be particularly useful to review the nature of

their general axioms. However, it will be instructive to review their descrip-

tion of the sample space of these models in order to indicate the special re-

strictions that are imposed on the sample space in this two-concept teaching

model.

The elements of the sample space of' stimulus sampling models in general

are sample sequences defined on a discrete time parameter set which consists

of trial numbers. It is customary in mathematical learning theory to start

counting with trial 1 so that the time parameter set of these processes is

usually the set of all positive integers or some subset of the positive in-

tegers.

Estes and Suppes show that the coordinate at trial t of a sample sequence

in these models consists of an ordered 6-tuple of values, (C,T,s,i,j,k). The

first term, C, in this expression denotes a conditioning function which

partitions an abstract set of stimulus elements, say, S into subsets such that

each element in any one of the subsets is conditioned to or connected to a

particular response, and the various cells or subsets of the partition are each

connected to a different one of the available responses. T denotes a subset

of S that is chosen for presentation to the subject at a given trial and hence

these authors call T a presentation set of stimuli. The third term, s, refers

to the subset of T which the subject samples. The component i refers to the

response that the subject makes on sampling the presented stimuli; while j

denotes the outcome of the trial (receipt of food, avoidance of shock, being
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informed of correctness of response, etc.) that the experimenter arranges to

follow the various responses. The last value, k, in this 6-tuple designates

an unobservable reinforcing event that may occur and alter the conditioning

function at the next trial.

Single-Element Stimulus Sampling Models

A number of special cases of the general stimulus sampling model have

been developed for application to specific experimental situations. One of

the simpler versions of the model that has been applied extensively is the

single-element stimulus sampling model. In this model, the set of stimulus

elements is considered to consist of but a single element. The sampling

axioms of the general stimulus sampling theory are usually modified in the

single-element version to assert that the subject samples this element with

probability 1 at each trial. The modification of the conditioning function

from trial to trial is then assumed to be governed by a probabilistic process

involving conditioning rate parameters.

The sample space of a typical single-element model consists of sequences

whose coordinates at trial t can be reduced to a 4-tuple of values. Since

the presentation set and the sampled subset in the usual versions of single-

element models are at each trial the single stimulus element, these components

can be deleted from the description of the sample sequences. Consequently,

the description of the coordinate of a sample sequence at trial t in a single-

element model can be reduced to (C,ij,k)t - where these four components which

are retained are defined as in the general theory.
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Frequently, the first component of the 4 -tuple is given in terms of the

values of the conditioning function. For example, in a simple two-response

situation (i = 1 or 2) one might let C represent the value of the conditioningI

function - the single element is conditioned to response 1. These values of

the conditioning function are often referred to as the states of the conditioning

function or as the states of conditioning.

The sample space for the particular single-element stimulus sampling model

which will provide the setting for the present study of sequential design of

teaching experiments will be described in detail in the following section. For

further information about the structure of single element models a number of general

references are available: see, for example - Suppes and Atkinson 1[21 3, Estes

[13 1, Bower 1 5 3, and Atkinson and Estes [ 2 ].

A Two-Concept Teaching Model

A very simple model of a teaching situation which is at the same time

complex enough to reflect some of the branching problems that occur in automated

teaching experiments can be defined in terms of two related concepts. The two

concepts which are considered will be labeled Concept A and Concept B. In the

language of stimulus sampling theory each of these two concepts can be re-

presented as an abstract stimulus element say respectively A and B. Two types

of items are considered to be used in this experiment; they are called items of

type A and of type B. The various items in the set of type A items are viewed

as equivalent reproductions of the stimulus element A and a similar interpretation

of items of type B as equivalent reproductions of the stimulus element B is
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made. Consequently, the two types of items may be thought of as two presenta-

tion sets A and B and at each trial either the element A alone is presented or

the element B alone is presented; no other presentations of stimuli occur.

On the presentation of either element, it is assumed that the presented element

is sampled with probability 1.

There are assumed to be only two possible responses to an A item or to a

B item; consequently, the response index i = 1,2,3, oi 4. However, it is further

assumed that the responses are separated into two disjoint pairs such that, say,

1 and 2 are the only responses available to the subject on item A trials and

3 and 4 are the only responses available on item B trials. Further, it will be

assumed that the experimenter wishes to have response 1 conditioned or connected

to element A and response 3 conditioned to element B (responses 1 and 3 are

respectively the correct answers to Concept A items and Concept B items).

The outcomes of each trial are limited to two values. The subject is

told either that he has made the correct response, say j = 1 in this case, or

he is told that he has made the incorrect response, j = 2. For simplicity, it

is assumed these two outcomes have symmetric effects on the reinforcement of the

correct response and that reinforcement occurs with probability 1 at each trial.

Since reinforcement is a deterministic process by these assumptions, it will

be possible for this model to delete the reinforcement component from the

description of sample sequences.

In defining the sample space for this two-concept teaching model one could

use the notation of the general theory and designate the coordinate of a sample

sequence at trial t as (Ci,T,i,j)t. In this expression the conditioning function
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C can take four possible values C1 , C2 , CY, or C4, the presentation sets are

either T= A or T = B, there are four possible responses R,, R2, R, RB4, and

the experimenter's outcomes j take two values, say, j = 1 being the outcome,

"you gave the correct answer" and j = 2 being the outcome, "you gave the

incorrect answer."

The use of this notation would suggest the interpretation that this two-

concept teaching model is a two-element stimulus sampling model. However,

since the four responses in this model are grouped so that only a fixed pair

are available on A trials and the remaining pair are available on B trials,

it seems appropriate to interpret this model as consisting of two "linked"

single-element processes. This interpretation is emphasized by using the follow-

ing notation to define the sample sequences. For exvmple, let (CA, CB, A, RA)t

represent the outcome at trial t that the Concept A conditioning function is

in the state CA (the stimulus element A is connected to the correct response),

the Concept B conditioning function is in the state CB, a Concept A item was

presented at trial t, and the correct response, RA, was made to the A item.

The Concept A and Concept B conditioning functions are each assumed to

take two values. The two sets of values or states of these two conditioning

functions are denoted respectively CA,CA and CB, C. The states CA and CB can

be interpreted as states in which mastery of the concepts has occurred--that

is, when a subject is in these states the stimulus element A or B is connected

to the appropriate responses. The states *A and ýB are interpreted as guessing

states. When a subject is in these states he may guess the correct answers

RA or RB with probabilitics, say, gA and gB or may guess incorrect answers, say,
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RA RB. The complete set of possible combinations of these components that

may occur at coordinate t of a sample sequence is the following:

(C C )A,- ARA )t,(C CA, R (C )p

( cCB ýA,-a )t, ( C, , A,Ra),C ,CBj, )t, (C, B,RB, ) t

(The notational practice of grouping the components of the tth coordinate of

a sample sequence within parentheses with the trial number as a subscript will

be used generally. Events or sets of the elementary sequences will usually

have their trial numbers indicated in the same way. Departures from this

notation will be defined as needed.)

Marginal Distributions of Responses at Trial t

The states of the conditioning function are typically not observable

aspects of stimulus sampling learning experiments. On the other hand, the

distributions of the item responses which are observable characteristics in

these experiments when the states of the conditioning function are given, con-

stitute a set of time-independent Bernoull: distributions (in settings like the

present problem which involves two possible responses). This results from

the response axioms of stimulus sampling theory.

To clarify and emphasize this point about the response distributions, the

marginal distributions of responses at a particular trial t will be described.
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Letting Rt be the set of possible item administrations and responses at trial

t, i.e.,

Rt = ((A ,(A)t,(B,RB)t,(B,W)t)

and letting Ct be the set of values of the two conditioning functions at trial

t, i.e.,

t ( A' Bt' A,ýB)t,(ýACB)t,(CACB)t)

one may then define the marginal sample space say Yt as the triple Yt

(Rt,Ctp(.Ict)). The conditional distributions on the elements rt of the

outcome space Rt given the values ct of the conditioning function at trial t,

are defined for this stimulus sampling model as follows:

Pýrt = (A,RA)tI(A)t,ct= (CA,jCB)tL= 1

St : A lA)t tct = (C ACB)t

Pfrt = (A,RA)tl(A)t, ct = (CA CB)t} g 1

pJrt = (ARA)tI(A)t,ct = (•A,cB)t = gA

Pfrt = (B,RB)tI(B)t, ct = (CACB)t} = 1

Prt = (B,RB)ti(B)t, ct • CB)t = 1
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prt = (BRB)tl(B)tct = (CA',B)t} = gB' 0 < gB 1

prt = (B,RB)tl(B)tct = (Z AcB)t-= gB

where the probabilities gA and gB represent the probabilities of guessing

correct responses to Concept A and Concept B items when these concepts have

not yet been mastered.

For the marginal sample space Yt' it is evident that the values of the

conditioning function Ct have been interpreted as parameters of the response

distribution at trial t. However, in stimulus sampling models the time-dependency

properties of these stochastic processes are characterized principally through

the probability distributions defined on sequences of values of the conditioning

functions. Estes and Suppes 141 have given conditions under which sequences

of certain random variables will be finite-state Markov chains. Frequently,

it turns out that the values of the conditioning functions can be taken as

states of a lst-order Markov chain. The manner in which it seems necessary to

represent the set of possible pure experiments in studying the design of these

two-concept teaching programs does not allow the sequence of values of the

conditioning functions to be a lst-order Markov chain. This results because

the rules governing the choice of presentation sets or items to be administered

must allow for all configurations of past histories of items presented and

responses obtained.
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The Set of all Possible Experiments, En

It will be convenient for the purpose of defining the set of all possible

teaching experiments, say En, which the experimenter could perform first to

restrict the numbers of trials to be allowed in a teaching program to be at

most a finite number, say n. (This is not a practical restriction at all but

it does impose some mathematical restrictions, principally on types of limiting

processes that can be performed.) The teaching program under this restriction

can thus be regarded as a sequential statistical game truncated at n trials.

It is clear that the rules for defining a complete experiment in a

sequential teaching program can be based only on the observables, the types

of items that have been administered and the responses that occurred to these

items. For a teaching experiment involving two types of items and dichotomous

responses to these items over n trials, one will find that E consists ofn

2 (2n-l) experiments. All of the component experiments in En may be described

by enumerating all the trees or branching patterns that can be generated from

consideration of the types of items that may be administered at each trial

(A or B) and the responses to these items (RA or RAand RB or B).

It may help, to clarify further the concept of an experiment, to list

several trees of experiments in this teaching model. For simplicity's sake,

attention will again be restricted to small experiments--consisting in this

illustration of 3 trials. Let R = Rl•R 2 R3 be the outcome space for such a

3-trial experiment. It is readily shown that R consists of 43 = 64 outcome

sequences. An experiment e3 will be a subset of R in which the responses at

trial 3 are ignored.
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A teaching experiment can be viewed then as a rule which determines a

sequence of subexperiments or item administrations over all trials. Such

rules can be illustrated by branching patterns or trees. Two trees that define

two experiments for a three-trial learning situation are shown in Figures 2 and 3.

The first tree, Figure 2, illustrates a rule which is conditioned only on the

trial numbers. This rule (e1,3) is, "Administer an A item at each odd-numbered

trial and a B item at the even-numbered trial." The second tree, Figure 3

illustrates the rule (e2,3), "Administer an A item at trial 1, and administer a

B item following a correct response to any type of item, but administer an A

item following an incorrect response to any type of item."

Item Administered at Trial 3

A A A A

(Respans e RB B

Trial 2

kItem Administered B B

R
(Re sponse A A

Trial 1

LItem Administered A

Tree of the Experiment, el, 3

Figure 2
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Item Administered at Trial 3

A B B

f'Response RA RRA

Trial

(Item Administered A B

R~esponse R A ~A

Trial

Item AdministeredA

Tree of the Experiment e-2,3

Figure 3

These two trees illustrate the complete prescription of what types of items

are to be administered at each trial under the conditions of the rules or

experiments e and e , When the two trees are extended to include the
-1,3 z-2, 3

responses that could occur at Trial 3, there are then 8 branches to each tree.

The 8 branches represent the possible sequences that can occur as elements

of the outcome spaces, Re and Re ,which are determined as restrictions-1, 3 -e2, 3

of the outcome space R respectively by the experiments el,3 and e2, . The

elements of the outcome space R are the eight sequences_el,3
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J(Af R (B (A (ARAl, B, (A, A]

while the eight sequences which comprise the outcome space of the experiment

-2,3 are

(A,?RA)l1, (A, RA)21 (A, RA)3 (A, RA)l, (B,?,) 2 (A'RA)J

It is evident that these rules for determination of experimental sequences

are deterministic or non-randomized rules concerning what type of item to

administer next, given the history of item administrations and associated

responses that has occurred prior to the current trial. It is clear that

in the 3 trial situation illustrated he're there are 25 = 32 distinct trees
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and hence 32 possible experiments. These experiments would represent all

the pure strategies that the statistician could employ with respect to the

allocation of types of items to the various trials. Randomized item allo-

cation strategies can be developed by taking mixtures of the pure strategies.

Conditional Sample Space of the Truncated Teaching Experiment, e.
-K) n

For each experiment ekn E En, one may describe a sample space for a

truncated teaching program that will continue for at most n trials. Letting

X be the outcome space for such a truncated teaching program, one can re-

present this outcome space as the product space

x 't (' Cn

In this definition, one sees that although the observable item administrations

and responses are truncated at trial nthe effects of the items administered

at trial n and responses to these items may be carried along to modify the

distribution on the set of conditioning states at trial n + 1, Cn + i*

Let the sample space for such an experiment be called Z where
-k, n

This triple consists of: (1) the outcome space X; (2) the parameter set Q

whose elements _w are vector-valued parameters which govern the changes in the

distributions on the conditioning states and the response distributions; and
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(3) the probability distribution P{,ek,n} on the sequences x given a

parameter point w and the restriction of the outcome space X by the experiment

It will be convenient to introduce at this point a notation to distin-

guish the conditioning state components and the observable components of the

outcome sequences x. The symbols that will be used to represent generically

these two sub-sequences of components in any outcome sequence x will be c to

represent the sub- sequence of conditioning state components and r to represent

the sub-sequence of item administrations and responses, thus: x = (c,r).

Frequently, the values of the sequence of conditioning functions in

stimulus sampling models will form a Markov chain; but it has been noted that

the manner of definition of the set of experiments E generally will not per-n

mit a simple definition of a lst-order Markov chain on the conditioning states

in the present problem. However, it is possible to utilize some of the matrix

theory associated with the theory of finite Markov chains to simplify the

representation of the distribution of response sequences. For this reason,

the vector of initial probabilities of being in the various states of the

conditioning function will be defined and two matrices of probabilities of

transition from state to state will be defined.

Let the vector of initial state probabilities be called P', that is,

= [{~A~Bl' P(CAI'B)l}; P{(ýA;CB)l}, P{(CAICB)l1l.
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The transitions from state to state will be governed by four condition-

ing rate parameters, say, eA' eAB' B' 0BA" These parameters constitute the non-

zero entries in the two transition matrices which will be called P and P

The PA matrix applies to those trials where an A item is used and conversely

the PB matrix applies to B item trials. The structures of these two matrices

are shown below:

State at Trial t + 1

(?'ýB C'B 'A B (CA' CB)

State at Trial t

(C A'CB) 1-0A 0A 0 0

(CA,Bý) 0 1 0 0

PA A('CB) 0 0 1-0 AB

(CA, CB) 0 0 0 1

and

State at Trial t + I

(CA, CB) (CAB) (CA,CB) (CA, CB)

State at Trial t
(CA, -CB) 1-B 0 B 0

CA, CB) 0 I-BA 0 6BA
PB=
B (CACB) 0 0 1 0

(CA, CB) 0 0 0 1



9 April 1963 38 TM-1161/ooo/Oo -

The four conditioning rate parameters may be interpreted as follows: the

parameter eA represents the rate of transition from 'A to CA when Concept B

has not been mastered and a similar interpretation is given to eB; the

parameter eAB represents the rate of transition from C A to C A when Concept B

has been mastered; and the parameter eBA represents the rate of transition

from ' to C when Concept A has been mastered. Minimal restrictions on
ZB B

these parameters are that 0 < lA< 0AB_ 1 and 0 < eB :BA_< 1.
A- AB B- BA

The parameter space il will include coordinates that serve as parameters

of either the response distributions or of the total stochastic process

defined on the outcome sequences x. A representative parameter point w will

be defined to be a lO-tuple of the following form:

=[gAgB' 0B-'oaAeB; eB-t 0BA, p{(ý`'AB) lJP{(CA'ýB)l} (ACB) 111 P{(CA, CB)}1].

One can develop the joint probability distribution on the outcome space

of a stochastic process such as this teaching experiment in many ways.

Since the teaching experiment is a truncated experiment, this joint distribution

is defined on only a finite-dimensional domain and the representation of the

joint distribution is straightforward. In that part of stochastic process

theory which deals with discrete state and time-parameter sets one usually

regards the individual random sequences as elementary events. In principle,.

probabilities may then be assigned to each elementary event in the sample space

and probabilities of more general events of interest are derived from the

probabilities of the individual outcome sequences.
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Typically, it is conceptually too difficult to assign probabilities

directly to the individual outcome sequences of a process such as this teaching

experiment. The joint distribution will often be constructed from certain

marginal and conditional probabilities. To illustrate the development of the

joint probability distribution on the outcome space of this teaching experiment

a representative sequence will be considered. For example, the following

sequence is an elementary event or point in the outcome space of the

experiment e

i(C A',•B,A, RA)I1, (ýA, B, B, R)2, (ýrA,ýB, B, R) 31 (•A, B) 41.

Consider then the probability of this sequence given the experiment e2,3 and

a parameter point wo; i.e., the conditional probability

p( ýA ýBIA AR)lI(rIB ,R ; ( 'ý,B RB 3- B~~)41 I W- 2,eK'

The computation of the probability of this sequence will be sketched below

and s•me brief remarks will be made in justification of various steps of the

computation. From the multiplication law for the probability of joint events,

one can write that
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Z( )ARAl (CA' )c (jB ,A,RA B, (B,RB)B1&, ~ %.2

.pfA) CBA ) RB)21 A' B'A1B 1w .23

A~ 1B2 A' B0l ,3,3

4(% )3 (CA.1C B,4 (A, BARA) 1 , (C AC ,CB, B,)2 , B,"B)3, 1?`2 ,31

=p)B 2{(1Y (ýA,ýB,BR)l, %ýý'ýB2,3  P{(CA,3B4 (ABB 3  %.23

'4("~l' CAI B)2 (ýAc IAl)(
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(by the assumptions, for these stimulus samrpling models, that probabilities of

responses and next states of the conditioning function are dependent only on

the current state of the conditioning function, and that conditional probabili-

ties given the current state of the condition function of current responses

and next states of the conditioning function are independent).

(B)3 I (CA )CB A, RAl (CACB B, B )C, (,C)3, o 23

= pl(B) 3 L (A, RA)1, (B, 2, ) ?o, 2,3>

(by the definition of the experiment

By similar arguments one has that

- P{(RA 3l'%'C%) 2 ) (R,•BA)l, o ,--)2,3} { B)

S{(RA)1 I (CA,CB,A)l, A) 12,31 (CA, CB)2; (%A,CB,, A, ,2,31

and

P{(B)2 I (eArBARA)I' (,A',B)2' %'e2,3} = {(B)2 I (ARA)l,
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In summary, when these simplifying values are substituted into the

expression for the conditional probability of the complete sequence, one

obtains the result that

=pý,(ý ARA)l, (~'A, 'BB)B, ½3 P{CA BR w (AB , e3

SA l A'BB'-o23 A'BRB 21 ('A'A 1' B3 -a -2,31

.i 3 3' 3' 31

To evaluate the probability of this sequence, one uses the values given

explicitly in the paramneter point n and other values implied by the definition
--O

of the experiment , thus,

B)2 A' B Al C A' B' .2 2,3 A'CB' 3' ACB 2 -o-)1.2,31
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r-
= g BQo(1-0 )lo g (1-0 B~) gl ( A,o) i pQ .cký ( ABl~f

2 (1-
= B,ogA, o (0B,o) A,o) Pof(CA'B)I}

This example shows how the probability distribution on the outcome

sequences may be evaluated in terms of certain marginal and conditional

distributions. The probabilities which will be of chief interest in problems

dealing with the design of teaching experiments are probabilities of response

sequences and certain marginal probability distributions of the states of the

conditioning functions. Matrix operators may be defined which will provide a

convenient way to compute these two types of probabilities in a manner very

similar to the matrix operator calculation of response probabilities that is

employed in linear models of learning [e.g. see Bush and Mosteller, 8].

Conditional probabilities of the various responses, given the current

state of the conditioning function, were presented in the illustration of the

computation of the probability of an outcome sequence, for example,

I(RB) 3 I (CA,CB) 3 , _Wo,e23}. Since these probabilities are assumed to be

constant over trial numbers, they will be collected into four matrices. Let

DA, DA and DB, DB be the following four diagonal matrices:
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(RA)t (RA)t (RA)t (RA)t

(C ACB,A)t 8

DA (Cp,,N,A) o 0 1a

A ~ AcBA)t 0 0

(C A)CB)A)t L0 0 0 1

(RA~,At (R~ a R~ a A~t
(cA,IIB, A) t a1g 0 a

A (CAJ'cB,'A) t 0 0a

(C A-'CB,A)t 0 0 1-9

(CA' CB,B)t - a 0 1

(C B)t l-F 0 0 0

D (CAI B, B) t 0 a- Ba

(C A,CBB)t 0 a a 0

(C AICB,B)t 0 0 0 1
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The principal diagonal entries in these matrices are the probabilities of

various responses given the current state of the conditioning function and the

type of item administered as specified by the row label. Off-diagonal entries

are defined to be zero. The DA matrix gives conditional probabilities of cor-

rect response to A items; the N matrix gives conditional probabilities of

incorrect responses to A items. The matrices DB and ýB are similarly defined

for trials involving B items.

It has been shown that the conditional probability of a state of the

conditioning function at the next trial and a particular response at the

current trial given the conditioning state at the current trial and the type

of item that was administered may be broken down into a certain product of

two conditional probabilities. For example,

(RB)3) (CA, CB)41 (CACBB), So,2, 3

p{(-B), I ( .'A,•BB),, I JCA CB), 4 ^. B'ABB), o

One will recognize that given the experimental rule e2, 3 ,the remaining parts

of the specification of the two conditional probabilities on the right-hand

side of this expression are contained in the matrices DB and P B In general,

the various sets of conditional probabilities of the type given on the left-

hand side of the above expression may be computed as the product of one of

the diagonal matrices with either the PA or PB matrix. The resulting condi-

tional probabilities along with the specification of the experimental rule
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and the parameter values w provide the basic quantities needed to compute

the relevant probabilities.

Several more matrices and vectors will be defined to complete a basis

for convenient representation of the computation of important probabilities.

Let PRA, PA be matrix operators or transformation matrices where

A A

gA(le-A) gA"A 0 0

0 1 0 0

PRA D DA PA0 0 o A('-"AB) 0A0A

0 0 0 1

(l-gA)(1-OA) (l-gA)eA 0 0

0 0 0 0!

PP A A 0 0 (1-gA)(I-OAB) (1-gA)eAB

0 0 0 0
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gB(I.0B) gB B 0 0

PRB D B PB 0 gB(I-OBA) 0 9B BA

0 0 1 0

0 0 0 1

(1-gB)(l-OB) (1-gB)OB 0 0

0 (l-gB)(1-eB) 0 (1-gB)0B

0 0 0 0Bm

These four matrix operators permit one to calculate the probabilities of the

states of the conditioning function which correspond to the various branches

of the trees of the different experiments. For example, experiment e2,3 uses

an A item at trial 1. The joint probabilities of the states of the conditioning

function at trial 2,in conjunction with a correct response, RA, to the A item

at trial 1, are computed by applying the transformation matrix P to the vector
! A

of initial state probabilities P1 ; thus,

ICA CB),(A CB, (CA C) (CA CQ ,(A, RA)lJ PI_ PRA
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If an incorrect response had occurred at trial 1, the joint probabilities of

the conditioning states at trial 2, in conjunction with an incorrect response

RA, at trial l,would be computed by applying the matrix P-- ; i.e.,
A RBA

S[{ A'•B)2' (CA,ýB)2, (ýA'CB)2, (cACB)2] (AAA)I} = A JA"

Note that PF and P-- are not stochastic matrices (P and P also are notR A R A P

stochastic matrices); consequently the vectors P' P and-P' Pt A do not repre-

sent probability distributions. However, the sum of these two vectors does

yield the conditional probability distribution of the states of the conditioning

function at trial 2, given that an A item was administered at trial l, since

P1P + P1- = P1 (D + ) PA=P I PA = P P
:-1 B A ElRA - A A+ A -1l

and PA is a stochastic matrix.

Definitions of four additional vectors will be introduced here in order

to simplify the computation of various response probabilities. Let

-gA P{(RA)t I( A; CBA)tf 1

gT(RA)t (CA' CB, A) t
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1-A I '(CA.# A'B tj

RA 0-~ p{(IA)t I (CA' CB, A)t4

1-9A {(R)tl(CACB,B)4

9B P{(R )t 1( cA)B,B)tý

1B8 P{(R B)t i(CA'CB, B)t~

1 R{(%)t !(CA' CB, B)tJ

G = 
1 -9B = Bt;CAC,~

0 4(N)At CB, B

0 {(?()t (CA' CB, B)t~
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Probabilities of sub-sequences of responses along the various branches of

an experimental tree may readily be computed using these vectors. For example,

in the experiment e the probability of a correct response to the A item at-2,15

trial 1 is PI G while the corresponding probability of an incorrect response
-1-A

Conditional probability distributions on the states of the conditioning

function given a response sequence may now be calculated. The conditional

distribution of these states at trial 2 given a correct response to the A item

at trial 1, for example, is given by

p{FC(AC&2, (cA,ýýB)2, (ý'ACB)2, (CA CE) 2] (AB~ = %L A/{A

Joint probabilities of the states of the conditioning function with higher

level sub-sequences of responses are computed by applying the transformation

matrix appropriate to the item administration and response that occurred at

the current trial. To illustrate, the response sequence for experiment e2,3

which involves only correct responses will be considered. One obtains the

joint probabilities

(ARA)I, (B, P1 P P

and

• (AC•),(AB),(, B))' (C(A 'CB) (A, RA)l, (B,RB)2, (B, RB),

.P'P P P
-1RA P% -
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The corresponding conditional distributions of the states of conditioning

given these response sequences are respectively

({ (A)ýB)3, (rAICB)3,' (cA-ICB)3] I (A,iA)l, (B, RB)2}

= P P PG
- R AR B R -B

and

P{(CA,CB)4, (CA, CB)4, (A,CB)4, (CACB)4] I (A, 1 , (B,R) 2, B)

P RF A P % F B/11PR', p% p 2B

These matrix calculations provided a convenient scheme for computing all

of the probabilities that were necessary to determine best designs in the

illustrations that are taken up in Part 5 of this report. A few additional

types of probabilities are required for the determination of the sequential

designs in that section; however, the examples of computations that have been

given here should be sufficient to indicate the general scheme for computing

probabilities of events in these truncated statistical games.
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4. Objective, Loss, and Risk Functions in Teaching Experiments

The set of states of nature il which was described in Part 3 for the two-

concept, stimulus-sampling teaching model consists of multi-dimensional

parameter points whose components are initial probabilities of the various

states of the conditioning functions, learning rate parameters, and guessing

probabilities. If the statistical game that one wished to consider for these

teaching experiments were to be concerned with estimating the values of the

components of these learning parameters, the set 4 would be the appropriate

set of states of nature or set of pure strategies for nature. In a pure

estimation problem, 0 would no doubt be represented as a continuous set--

probably a hypercube embedded in a multidimensional real space.

Objective Functions

More modest goals seem appropriate when considering the design of many

teaching experiments. Frequently, one will be more concerned with the

occurrence of events such as the mastery of the more difficult of the two con-

cepts, or the mastery of both concepts, or the occurrence of correct responses

rather than with obtaining values for an estimator, say, 2 of the parameters

of the original game. Hence from the original two-concept teaching game

G (•, EXBD, p) several alternative games involving simpler objectives

will be "extracted" or perhaps it is better to consider that G will be "restricted"

to simpler objectives. The expression of these alternative objectives can be

done in several ways; conveniently, one can express these objectives either in

terms of certain sets of events in the outcome space X or in terms of "objective

functions" defined on these sets of events.
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Letting A represent generally such sets or classes of objective events

in X, one can define the new game restricted by A in some instances as

G = (Ax 1,ExBX D,p) and in other instances simply as G = (A,E)BXD,p). On

the other hand, letting q be an objective function defined on A, one can

characterize the restricted games in terms of 9) as either G = (q(A)x x,EXBXD, p)

or in some cases G = (cp(A),EXBXD,p) where rp(A) represents the range space of

(P. Specific examples of plausible objective functions are given in the

following illustrations.

Mastery of both concept A and concept B

In teaching situations involving the presentation of two concepts (or more

generally k concepts) one might wish to design a teaching program which in some

sense was best for the students mastering both concepts. It appears useful to

distinguish two classes of events relating to this objective:

let A 1 = (CA,CB) 1(CA,CB) 2...ACA,CB)n+1,(CACB)n+( CA, CB) '- 2 ... ,1

where (CA, CB)t represents the event that both concept A and concept B were

mastered for the first time at trial t (t = 1,2,...,n+l) and (CA, ) representsA CB n+l

the event that not both concept A and concept B have been mastered by the begin-

ning of trial n+l (the experiment having been truncated at trial n),

also let A(CA,CB)= {ACB)I (CACB)2, (CACB)n+l,(CACB)n+l1

k

where (CA,CB)k= tJ=(CA,CB) represents the event that both concepts have been

mastered by trial k (k = 1,2,...,n+l).
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These two classes of events seem to be the basic classes related to the

mastery of both concepts that are worthy of consideration. In the language

of stimulus-sampling theory, mastery of concept A and concept B means transi-

tion into the state CA for the concept A conditioning function and transition

into the state CB for the concept B conditioning function. The class of events

A (CACB)1 is seen to be a partition of the outcome space X while the class A(C CB)

consists of the event (C A, CB)n+l and a monotone-increasing class of subsets of

the complement of (C ACB)n+I.

Instead of considering these classes of events, it may be more useful in

certain circumstances to consider numerical-valued functions defined on these

classes. For example, with respect to the class A(CACB) 1it may be desireable

to define an objective function such as:

SCA, CB)t = t for t = 1,2,...,n+l

and

C n6CB)l) = 0'

For the most part, the effects of the restriction of the teaching games

by the classes of objective events or objective functions are reflected only

in the loss functions for these games. That is, the loss functions L in the

restricted games are defined on A Aor cp(A) XA instead of on the product set

formed between the parameter set il of the original game and the action set A.
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Mastery of the more difficult concept B

Another type of interesting teaching objective which might be pursued con-

cerns itself with achieving conditioning of the more difficult of the two

concepts, concept B. Mastery of concept A may or may not be pursued as a

subgoal insofar as it promotes faster learning of concept B. Two classes of

objective events will be defined for this type of a goal. Letting (.,CB)t1 be

the event that conditioning or mastery of concept B occurred for the first time

at trial t (t = 1,2,...,n+l) and (-,CB)n+1 be the event that concept B has not

been mastered after n trials, define the following class of events:

A 1 (.' ) ." 1 (.(.c
(.,CB) B 1) B 2  B n+l,' ,•B)n+

or as an alternative definition of an objective of this general type one might

wish to consider the class of subsets of the outcome space defined below:

( =(CB) 'Bl(., B)2, .. (.,CBn+I, (1. B n+I1

k 1
where (.,CB)t = t=l cB)t"

Weighted response scores

An appealing and frequently used objective in the development of psycho-

metric tests consists of assigning numerical scores to the correct responses

and errors that can occur on administration of the items of the test. Applying

this objective to the situation of teaching the two concepts A and B, one might

define random variables or scoring functions, say, W* as follows:

let W* ((RA)t)) = wA, W*((A)t)Y = wA
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and W*((B)t) = WB, W*((RB)t) = wB

where 0 < wA < wB

The values wA and wB could be thought of as the utility to the experimenter of

correct responses respectively to concept A items and concept B items. Conse-

quently, following the statistical convention of using non-negative loss

functions instead of utility functions, one could define an equivalent score

function, say W, in terms of losses as follows:

let W((RA)t) = WB-WA W((RA)t) = wB + wA

and w((r )/ ) B o , w((")t) = 2wB

Although one could perhaps use such a system of response scores to develop an

objective for a standard sequential design game involving teaching experiments,

this type of s e t up provides a basis for introducing a related aspect of sequential

game theory which has not been dealt with in the outline of sequential design

of experiments presented earlier in this paper. The sequential games which

were outlined allow the experimenter to make use of a sequence of subexperi-

ments to gain partial information about nature's choices; finally, the

experimenter makes a terminal decision and conceptually a payoff is then made

in loss units at the ,,d of each single play of the sequential game. Some

investigations have been made into the theory for playing sequences of games

(see Luce and Raiffa [15] for a survey of various types of situations

involving plays-in-sequence of games or sequential compounding of games).
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Although there are many similar features found in the theory of sequential

games and the theory of sequences of games, it should be evident that the

characterization of terminal decision functions especially will vary considerably

between the two theories. On the other hand, questions such as whether the

sequences of subexperiments or sequences of games will terminate with proba-

bility 1 arise in both of the two theories.

The theory of sequences of games will not be elaborated here but it is

important to emphasize that certain objectives and their associated payoff

functions in teaching experiments are best represented as a sequence of games

rather than as a sequential game. This distinction can be illustrated by

consideration of the simple urn game that was discussed in Part 2. An analogy

between that urn game and the teaching game involving the teaching of the two

concepts could be made by representing, say, concept B as the urn U1 and

concept A as the urn U,. Further, let the draw of a white marble be inter-

preted as equivalent to a correct response and the draw of a black marble be

equated with an incorrect response. Let a payoff in loss units be defined by

the scoring function W.

An example of a sequential game involving the order of presentation of the

two urns has been given. Recall that player 1 had two pure strategies--

present the urns in the order (UIu 2 ) or in the order (U , U1). Player 2's

terminal actions consisted of these 3ame two identifications of the order of

presentation of the urns. Payoffs were defined in terms of whether player 2's

choice of a presentation order agreed or disagreed with the choice that player

1 had actually used. Player 2 was also allowed to perform experiments for a
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fee in order to gain partial information about the composition of the two urns

before making his terminal decision.

As an example of a sequence of these urn games consider the situation

described as follows: Let player 1 have four urns. Let two of the urns be

identified as concept-B urns with respect to the scoring function W and two as

concept-A urns with respect to W. Let the concept-B urns be relabeled as

UBl and UB2 and suppose that the proportion of white marbles in U exceeds

the proportion of white marbles in U B2. Let the concept-A urns be similarly

relabeled as UAl and UA2 and the proportion of white marbles in UAl be greater

than the proportion of white in UA2.

The first game in the sequence proceeds in the following way: Player 2

is allowed to request a draw from either a concept-B urn or a concept-A urn

but can only specify a choice from one of these two pairs and not a specific

one of the four urns. Suppose that player 2 selected the UB urns, then

player 1 is allowed to present either U or UB2 for sampling. Player 2 draws

a marble at random from the presented urn and a payoff is made for the first

game as prescribed by the scoring function W. A second game is now played

following the same rules, only the composition of the urn presented in the

first game is changed by allowing sampling without replacement. A number of

variations of rules governing the total sequence of these games could be

introduced, e.g., a fixed number of games could be played, player 2 could

be charged an entry fee for each game and given an initial purse to

gamble with, etc. Roughly, a good strategy for player 2 in these sequences

of games would be the selection of type of urn in each new game, given his
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history of selections of the types of urns and resulting draws which would

minimize his losses for the total sequence.

Similar sequences of games could be developed for teaching situations

involving two concepts and a scoring or loss function such as W. In these

situations the probabilities of obtaining correct or incorrect response to

items of the two types would be characterized, however, by more complicated

relationships involving the learning rate parameters 0A' OAB' 0B' and 0 A rather

than simply by the transitions determined by sampling without replacement.

Good strategies for such sequences of teaching games essentially should

minimize the sum over the sequences of the expected values of weighted

responses.

Expected trial of first reaching the state, (.,CB)

In our earlier paper [il) dealing with the optimal design of teaching

experiments, we defined an optimal strategy as one which minimized the expected

trial of first mastering the more difficult concept B or first reaching the

state (.,CB) by appropriate choice of certain probabilities of allocating

type A or type B items at each trial, given the item and response at the

im•nediately preceding trial. In terms of sequential game theory, this principle,

of designing the teaching experiment to minimize the expected trial of first

mastery of concept B,is perhaps best represented as a sequence of games.

Clearly, we did not incorporate a sampling plan with its component stopping

regions into the strategies considered in that earlier study,and consequently

we d:• d not incorporate a terminal decision function of the standard type used

in sequential games, either.
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The item allocation rules which constituted our basic strategies in that

problem were concerned only with the choice of which subexperiment one should

continue with. One could think of that design situation as consisting of a

sequence of games where player 2 may select the type of game he wishes to

play at each trial (choice of an A item or a B item) and he is given the

information concerning which type of game he played at the preceding trial

and its outcome. The payoff to player 2 could be thought of as t units of loss

at trial t if the student reaches the state (.,CB) at trial t and the payoff

to player 2 is zero at trial t otherwise. Consequently, the function

t ( .,C ) could be interpreted as the experimenter's expected loss in

'B tJt=l

an infinite sequence of these related games.

More general objectives

Several examples of objectives in these two-concept teaching games have

been presented. There are a number of other more general objectives which are

Yuch more difficult to formulate precisely.

In educational settings it is often desired that the consequences of

insufficient training on a set of stimulus materials be expressible in terms

of the subsequent rates of learning and performance on similar stimulus

materials used in related courses. To make precise such evaluations of losses

in terms of degree of transfer of training to other stimulus sets, one would

need to expand the mathematical model of the teaching process to include the

appropriate parameters that govern the transfer. 4i
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One often hears it said that a major reason for attempting to regulate

branching in a teaching program in accordance with the general abilities and

history of performance of individual students is that such branching proce-

dures promote and sustain the student's motivation to do well in the teaching

program. While there probably is a good deal of informal evidence to support

this reason for incorporating flexible branching rules in teaching programs,

it would, at this stage of our abilities to measure motivational aspects of

behavior, be the vaguest sort of speculation to discuss seriously the "optimal

design" of teaching experiments to promote and maintain students' motivation

levels.

Loss Functions

In the preliminary discussion of objectives and objective functions, it

was noted that the effects of the choice of alternative objectives enter the

representation of a sequential game through the loss function of the game.

That is, the set of pure strategies for nature is restricted by the statement

of an objective to either the set of objective events implied by the statement

of the objective or to the set of values of an objective function defined on

these events.

Again, several illustrations will be given to show, in this case, various

plausible loss functions that one might choose to use. For this purpose, it

will be sufficient to take up only one of the illustrative objectives: the

objective of achieving conditioning for both concept A and concept B.
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Losses evaluated in terms of occurrence of mistakes

A simple, plausible loss function that is often used when the set of

terminal actions for the experimenter is identical to the set of states of

nature consists essentially of assigning a loss of 0 when the terminal action

selected agrees with the state of nature and a constant positive loss is

assigned to all other pairs of states of nature and terminal actions (mistakes

or incorrect actions). For example, let the set of states of nature be given

by the class of events A(CA'CB)land suppose that the set of terminal actions

A is given by A(CA)A B). Losses evaluated in terms of mistakes might be

defined in a teaching experiment truncated at n trials as the following loss

matrix indicates:

Terminal Actions

(C ACB)1 (CA, CB)2 (CACB)3 .(CACB)n+l (C A)CB)n+l

States of Nature
1

(CA, CB)l 0 0 0 ... 0 1

(CA, CB)2 1 0 0 ... 0 1

1
(CA,CB)n 1 1 0 ... 0 1

C1 1 1 
1.. 1

(cA'B)n+l 1 11
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The losses in this matrix are considered determined up to a scalar multiplier.

The value k in the lower right-hand corner of this matrix will be allowed to

range over the interval [0,1).

This loss function might express the payoffs in a no-data game; however,

it should be evident that the terminal action (CA, CB)n should always be at

least as preferable as any of the terminal actions (CA,'CBt for all t < n.

Rather than attempting to modify the loss functions to remove such strong

inherent determination of the preference ordering on the terminal actions,

frequently it will be most suitable to impose restrictions on what values the

terminal decision functions may take at various stages of experimentation.

Illustrations of such restrictions are given in the design problems which are

solved in Part 5.

Absolute error and quadratic loss functions

In some teaching situations it might be desired to evaluate losses

associated with terminal decisions by more stringent standards which consider

not only the occurrence of errors but also the magnitude of the errors. For

example, let the class of events A (C1ACB) define an objective and again let

the set of terminal actions A be identifiedwith A(CA, CB) 1 . Suppose that an

experimenter expressed his losses in terms of the absolute value of the

difference between the trial number which he claimed was the trial when a

student first mastered both concepts, say (CA,CB) and the correct trial

number when first mastery occurred, say (CA,CB)t. That is, the absolute errors

generally would be defined as It-t'l. The complete loss function defined in

terms of absolute errors might have the structure shown in the following loss

matrix (perhaps defined up to a scalar multiplier):



9 April 1963 64 TM-1161/OOO/OO

Terminal Actions

1 1 1 1
(C ACB), (C ACB)2 (C ACB)3 (CACB)n+l (CACB)n+l

States of Nature
1

(CACB)l 0 1 2n

(CA,CB)2 1 0 1 ... n-i n

(CA, CB) 3  2 1 0 ... n-2 n

(C CBn+ n n-l n-2 ... 0 n

(CBA CB)n+l n n n ... n m

The loss m,which occurs when a correct decision has been made that the student

had not learned after n trials, would perhaps best be restricted by a condition

such as 0 < m < n.

In some situations it might be more appropriate to treat the errors whose

losses are shown, below the principal diagonal of this matrix, differently from

corresponding values above this diagonal. For example, the loss matrix shown

below might be more suitable than the matrix defined symmetrically in absolute

errors.
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Terminal Actions

1 1 1 1

(CA, CB)l (CAICB)2 (CA, CB) 3  ... (CA, CB)n+l (CA,-CB)n+l

States of Nature

(CA, CB)1 0 0 0 ... 0 n

(CA, CB) 1 0 0 ... 0 n

1

(CA C)31 2 1 0 .. O n

1

(CA)CB)n+l n n-I n-2 ... 0 n

(CA)CB)n+l L n n n ... n m

Frequently, it may be more appropriate and especially may be mathematically

more convenient to define losses in terms of the square of the magnitude of the

error rather than in terms of absolute error. Loss functions whose values

are defined in this manner are usually called quadratic loss functions.

Obviously, if the individual elements in the first of the two illus;trative

loss matrices shown above were squared, the resulting matrices would constitute

listings of all the values of two quadratic loss functions.

Risk Functions

The payoff functions in statistical games are commonly called risk

functions. Given a prior distribution A and an objective A for a game in-

volving the sequential design of a teaching program, and letting X represent
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an objective event in a class A which defines an objective, a risk function

p will be defined as follows:
•-•(eb'd• ! I Ic(r) + X, d(t, r)\ pfr 1--•2e44

Q(ebd))- ' 7 7 [C)] Lt+
t=l rebt _iE

where e is an experiment (truncated at n trials)

b is a sampling plan consisting of stopping regions

bt (t = 1,2,...,n)

d is a terminal decision function

r is a response sequence, the observable components of the

sequence x which comprise the outcome space X

w is a parameter point

X is an objective event

c is a cost function

L is a loss function

and p(rjcn,e) is a probability distribution of the outcome sequences

r c X when a parameter point w and an experiment e are specified.

More general risk functions than the above might be required in some

decision situations (see Raiffa and Schlaifer [18 ) for descriptions of such

generalizations) but the definition of risk in terms of additive effects of

sampling costs and terminal losses is predominant in sequential game theory.

In fact, a further specialization of the risk function is conmnonly employed

in many studies of sequential games; the cost function c is considered to

depend only on the number of subexperiments used, t, and not on the outcomes
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of the subexperiments performed (i.e. not on the values in the sub-sequences

(rlr 2 ,...rt)). The restriction of the risk function to the case of constant

costs will be used in the development of optimal designs in Part 5.

A Bayes solution for an optimal design of a teaching program with risk

function lQ,(e,b,d)) can be obtained by finding a pure strategy (e,b,d) which

will minimize p when the prior distribution A is given. A mathematical

programming technique for finding an optimal design in accordance with the

Bayes principle will be elaborated in the next part of this paper.
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5. Solutions for Best Designs in Some Miniature Teaching Experiments

A technique will be developed in this section of the report to solve for

best designs (or best strategies) in teaching experiments. Since the trees

of these games rapidly grow a large number of branches when the last trial n

is even a modest-sized number, it will be desirable for purposes of exposi-

tion to keep n as small as possible. For this reason, 3-trial truncated

experiments were chosen for examples as they are just large enough to allow

some interesting design features to be revealed and small enough to permit

detailed graphing of the overall structure of these experiments.

Other severe simplifications in these examples are made too for the pur-

pose of promoting clarity of exposition of the results. These examples

obviously are not intended as serious efforts to design optimally any

experiments for specific teaching situations but hopefully they should

illustrate a general technique for solving for best designs. Among the more

prominent of the further simplifications that are made are (1) the restriction

of consideration to only two types or populations of students and (2) the

restriction of the response distributions to the case of no guessing. Again,

these restrictions were made for simplicity of exposition of the optimization

technique; the removal of these restrictions, for the most part, has little

effect on the procedure for solutions for best designs.

Pure Strategies in a 3-Trial Teaching Experiment

Recall from the earlier description of a sequential statistical game

that a pure strategy for the statistican is a triple (e,b,d) where,in the
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case of a teaching experimente is an item allocation rule, b is a sampling

plan, and d is a terminal decision function. It would appear that in most

truncated learning experiments appropriate terminal decision functions should

take only the value which indicates a conclusion that conditioning has occurred

at any trial prior to the last trial of the truncated experiment. In many non.

truncated learning experiments, it will be appropriate to define the set of

terminal actions A to consist of but the single conclusion that conditioning

has occurred.

In the several examples of solutions for best teaching strategies that are

taken up in this section, the objective which is adopted is the teaching of

both concepts A and B. Thus, the set of terminal actions will be defined to

consist of two values a and a-%,where
c c

ac represents the conclusion that a subject is in the state (CA, CB)

and

a, represents the conclusion that a subject is in the complementary state
c

A B = B)c B)U(ýA CB)

To clarify the restriction imposed on the terminal decision functions in these

problems--since these d's are defined on the product set I n+1 X(and here

I n+ is the set of trial numbers tcI 4 - l,2,3,4)),the restriction on the

terminal decision functions is that d(tx) - a when t < n. For t = n+l,

d(t,x) may in the present examples take either the value a or an .
c c

The tree of a pure strategy for a 3-trial teaching experiment adopting

the objective of teaching both concepts is shown in Figure 4 below. In this

example the item allocation rule or experiment E2,3 is used in conjunction with
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the specific sampling plan b and decision function 0 The sampling plan

bJo partitions the outcome space Xe into the following sequence of
o -e2,3

cylinder sets

b = 0 (null set)
O 0~

b =01l, Jo=0

b Jo = x [rr (ARA),(B, RB)2])

M0
b5, -o 1x [r] (A,•A) 1) U [rl, r2) = [(A, RAll,(B,•) 2 ]1

The terminal decision function dk must take the value a for all outcome
0

sequences x which are elements of b The terminal decision function dk

further partitions b Mointo two subsets. This terminal decision function takes

the value ac for that subset of b3,Jo for which [r 2 ,r3] [(A,RA) 2 ,(B,RB)3-

and the function takes the value av when its argument is any of the remaining
c

sequences of b3,J
3J0

Normal and Extensive Forms of a Game

An obvious way to solve for the best strategy in this type of sequential

statistical game would be for each pure strategy to compute its risk against

a given prior distribution it, and then to pick out the strategy (or strategies)

having the smallest risk. Unfortunately, although there are only a finite

number of pure strategies in the games considered here, the number of pure

strategies becomes so large so fast with increase in the truncation number n

that even with the aid of large high-speed computers, solution by sheer enumer-

ation of risks is almost never feasible.
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A considerable reduction in computational effort can be gained by

representing these statistical games in an alternative equivalent manner. The

characterization of a game as a triple G = (I, J, 41) which was given in

Section 2 is referred to as the normal form of a game. Essentially, the normal

f o r m of a two-person, zero-sum game consists of listing every pure strategy

for player 1 (a pure strategy for player 1 being a complete prescription of

what choices he will make at each of his decision points in the game given

all the available information of personal choices and random moves made prior

to these decision points) in the set I and every pure strategy for player 2 in

the set J. The specification of the utility function for player 1, ý' defined

on I x J completes the description of the normal form of such a game.

The representation of a game in extensive form roughly consists of:

(1) specifying in order each move available at the various stages of the game,

(2) identifying whether the move is a personal move to be made by one of the

players or a random move and identifying which player is to make the choice for

personal moves, (3) specifying the set of alternatives available at each move,

(4) specifying the probability distribution on the sets of alternatives for

each random move, and (5) finally giving the numerical-valued payoff to one

of the two players for each realizable play of the game.

The extensive form of a game may be diagrammed as a tree also. It is

evident that the tree which describes the complete extensive form of a 3-trial

teaching experiment will have many more nodes or vertices than does, for example,

the tree which illustrates the representative pure strategy (e 2,1 !'b o

However, the feature of the extensive form which makes it the more convenient
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representation for solving for best strategies in many problems is that the

number of branches to the tree which represents the extensive form is typically

a considerably smaller number than the number of pure strategies for the

statistician which appear in the normal form.

Space limitations prohibit the diagramming of the complete tree of the

extensive form of this teaching game except for a very small number of trials.

In fact, it will be sufficient here to illustrate the tree of a single-trial

teaching experiment. All pure strategies for the experimenter will be de-

rived from the overall tree.

Several additional notations will be required to graph the extensive

form of this teaching experiment. Following common practice, nature will be

designated as player 1, the experimenter or statistician will be designated

as player 2, and random moves will be assigned to an umpire or player 0. If

nature is in the state (CACB) at any trial, this state will be indicated by

the abbreviation C*. Conversely, if nature is in the state ('A,'B)U(CA,•B)U

(A, CB), this state will be abbreviated as ý*.

The tree of the extensive form of a single-trial teaching experiment of

the two-concept type under consideration here is shown in Figure 5. From the

tree of the extensive form of this single-trial teaching experiment, 9 trees

may be derived which represent all of the pure strategies for the statistican

in this case. The trees of these 9 pure strategies are diagrammed in Figure 6

below:
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(1) (2) (3)
"Trial 2" - Expr's Choice

aac a a a ac

Response A A A A A

Trial 1

IjExpr's Choice A A

(4) (5) (6)

"Trial 2" - Expr's Choice
a ac aa 

a

TResponse WA A B R.B

Trial 11

Expr' s Choice A B B

(7) (8) (9)

"Trial 2" Expr's Choice

a a a a
C C C C

~ResponseB

Trial 1

Excpr's Choice B B a

Trees of the 9 Pure Experimenter's Strategies Derived from Figure 5

Figure 6
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Consequently, for this exceedingly simple single-trial teaching experiment

there are only 9 pure strategies for the experimenter while a count of the

number of terminal vertices of the graph shown in Figure 5 reveals that the

tree of the extensive form of the single-trial game has 18 branches. In the

single-trial case only, enumeration of the risks associated with each of the

experimenter's pure strategies would be the simpler way to determine the best

pure strategy. One can readily derive the following two formulas which give

respectively the number of branches of the tree of the extensive form of

this teaching experiment and the number of pure strategies for the experimenter

in this game as a function of the truncation trial number, n:

Number of Branches to Tree of Extensive Form, tl(n) 41

rl(n) = ' 2 2(t-l)+l + 2 2(n+l) for n = 1,2,3,...
t=l

Number of Experimenter's Pure Strategies, T2 (n)

T2(1) = 9

r 2(n) 1 + 2(T2(n-1))
2 for n - 2,3,4,...

The number of pure strategies for the experimenter has been derived here under

the assumption that the experimenter has perfect recall of all of his earlier

moves whenever he reaches another choice point. Frequently, the number of

pure strategies for a player in an abstract game is computed in a redundant

fashion yielding much larger numbers of strategies than the values of T 2(n)

given here (e.g., see McKinsey [16] for a discussion of ways of counting all
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strategies). However, for a rough comparison of the computational efforts

required by sheer enumeration of the risks of each pure strategy to find the

minimum-risk strategy versus the computational technique which will be pre-

sented that considers the extensive form of the game, the values of T1(n) and

r 2 (n) are appropriate.

In Table 1 the values of T1 (n) and ¶2 (n) are listed for n = 1,2,3,4,5.

It is evident that even T1 (n) increases quite rapidly with n but at a rate

considerably less than 2(n).

Table 1

n T1 (n) T 2 (n)

1 18 9
2 74 163
3 298 53, 139
4 1, 194 5,647, 506,643
5 4,778 63,788,662,565,458,258,899

Solution for Best Designs By Backward Induction

A general technique is known for finding best designs for sequential

experimentation when the set of states of nature a and the set of terminal

experimenter's actions A are finite. In this case, algorithms can be set up

which with the computational assistance of a large high-speed computer permit

one to solve for best designs in a number of circumstances. Blackwell and

Girshick [41 refer to this technique as "backwards induction." Raiffa and

Schlaifer [18] suggest that the procedure might better be called "averaging

out and folding back." The folding back stages of the solution are done in

accordance with the "principle of optimality" of dynamic programming
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[Bellman,3] and indeed the backward induction procedure can be viewed as an

application of dynamic programming.

To complete the representation of the extensive form of the single-trial

teaching experiment which has been partially depicted by the tree in Figure 5,

one must assign the numerical-valued payoff to one of the players of each com-

plete play or branch of the game. Furthermore, a probability distribution may

be defined over the branches of the tree by assuming, at the outset of the

backwards induction process, that the conditional probability of the experi-

menter's selection of each alternative at any of his choice points is l,given

the entire history along the path leading to these choice points. As the

folding-back process proceeds, these conditional probabilities of selection of

an alternative become 1, for the alternative chosen to be best at a particular

choice point,and O,for the remaining alternatives at that point.

The backwards induction technique will be illustrated by considering the

tree of the single-trial experiment shown in Figure 5. The objective in this

procedure is to find which of the 9 pure strategies depicted in Figure 6 is

the best strategy for a particular game. The essentials of the computational

process in this simple case can be shown by establishing two tables of values.

In Table 2.1, all of the branches of the tree which represent the utili-

zation of either an A item or a B item experiment are listed (each of these

branches may be identified as including 5 nodes or vertices). Along with each

play or game sequence, the probability of the sequence is listed. The payoff

of each sequence or play of the game to player 2 is listed in column 3 of

Table 2.1 as the loss to player 2. For the moment, the values of these
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probabilities and losses may be considered to be given numbers. The basis

for derivation of these particular values will be indicated later.

The 16 sequences in Table 2.1 have been grouped there into 8 pairs. Each

pair represents the choice of one of the 2 alternative terminal actions a• or
c

a when one of the 4 experimental outcomes (A,?A), (A, RA), (B,?), or (B,RB)c

has occurred. Within each of these 8 pairs, player 1 or nature has chosen

the state N*; however, player 2 does not have precise knowledge of which state

player 1 has chosen but only knows the probabilities of each sequence. The

losses to player 2, if he chooses a- or a at "Trial 2" when nature chooses

or C, are the values given in column 3. Since player 2 does not know the

-" precise loss he will incur from taking either of his terminal actions in view

of any of the four experimental outcomes, he computes his expected loss over

the probabilities given in column 2. The resulting 8 values of expected losses

are given in column 4. This phase of the process represents an "averaging out"

stage.

On the basis of the expected losses, the best actions at the "Trial 2"

level of the game are now determined for each of the 4 possible experimental

outcomes that could occur. For example, if a type A item had been administered

and incorrect response ?A occurred, then the expected loss of taking the action

a- is .26875 while the expected loss of taking action a in this circumstance
c c

is .05. Consequently, the best action,or the action which minimizes the

expected loss in this case, is a . The 4 best actions at "Trial 2" in this gamec

are listed in column 5 of Table 2.1.

The sets of sequences representing the best actions at "Trial 2" are now

"folded back" and considered along with terminal actions permitted at Trial 1
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in order to complete the determination of the best pure strategy for player 2.

In Table 2.2, the events or sets of sequences which correspond to the best

actions at "Trial 2" are listed in column 1 along with the only additional

terminal action permitted at Trial 1, a . The probabilities of these eventsc

are given in column 2 of Table 2.2 (the first four values of this column are

carried along from Table 2.1 while the last two values may be considered to

be given numbers).

In the third column of Table 2.2., losses to player 2 associated with each

of the 6 events are listed. The first four values of this column are the

expected losses of these best four actions at "Trial 2." The fifth and sixth

values in this column are the given values of taking the terminal action a
c

when respectively nature chooses the state •* or C*.

The 6 events in Table 2.2 have also been grouped into pairs. Within each

of the three pairs, it is again necessary to "average out" the losses

associated with the choices of player 2. In the case of the pairs (A.,WaC),

(A,RA, a ) and (B, iBa C), (B,RBac), the expectations are computed over the

probability distributions of the responses A, Aand RBRB, The expected loss

of the two expected losses from the "Trial 2" level associated with the choice

of the item A(or B)is computed by merely summing the two higher level expected

losses. The expected loss of the action a at Trial 1, is computed byc

averaging the losses of that action given in column 3 over the corresponding

probabilities given in column 2.

The best pure strategy for this particular single-trial teaching game

may now be identified as the one of the three strategies which has the minimum
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expected loss or risk. The three expected losses in question are given in

column 4 of Table 2.2. The strategy with minimum risk is seen to be the

strategy which includes the two sets of branches (A, A, aa)U(ARA,ac). The

tree of this best strategy is tree (4) in Figure 6.
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Table 2.1

Branch or Probability Loss to Player 2 Expected Loss of Best Action at
Sequence of Sequence Associated with Terminal Action "Trial 2"

Sequence at "Trial 2" to
Player 2

(A, RA• -ac, C*) .025 .85 .26875
11W

(A, ýA,a, CC*) .225 1.10Ac(A,•A ac)

(A,'^A, ac,'*) .025 1.10 .05

(A, 'A, ac, C*) .225 .10

(A,RA,`ac, *) .25 .85
Ac.7625

(ARAac,C*) .50 1.10 (ARAac)

(A, RA, a,,'*) .25 1.10
.325

(A,RA, ac, C*) .50 .10

.05 .85 .2625

(B, ,ac C*) .20 1.10 (B, ,aC)

(B,.'.,a C, C*) .05 1.10o07
.075

(B, ?B, a, Cc*) .20 .i0

(B,,,ac,' ) .25 .85 .7625

(B,RBac C*) .50 1.10 (BRBoaO)

(B, , ac, ') .25 1.10
( 325(B,1•,ac,C*) .50 .10
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Table 2.2

Event Probability of Loss to Player 2 Expected Loss of Best Pure
Event Associated with Pure Strategy to Strategy

Event Player 2

(A, ?A, ac) .25 .05 (A, IA, ac)

(A, RA, ac) .75 .325 (A,RA, ac)

(B,iB,ac) .25 .075

.40

(B,RB,ac) .75 .325

(a , c*) .50 .1
.50

(acC•) .50 0



9 April 1963 84 Tm-1161/ooo/oo

Examples of Best Designd for 3-Trial Teaching Experiments

The single-trial example of a teaching experiment illustrated the general

form of the backward induction computational process but it was such an

abbreviated example that it did not permit a very interesting look at item

allocation problems. Furthermore, it will be desirable to explore the effects

that alternative loss functions and prior probability distributions on the

parameters have on the structure of best sequential designs. For these reasons,

five examples of best designs for 3-trial, two-concept teaching experiments

were computed. The results of these computations are described in the re-

mainder of Section 5.

Description of the alternative populations of students

The role of prior probability distributions on the parameter set S may be

introduced by reference to several classes or populations of students. Thus

each point w c a will be viewed as determining a population of students. It

will be sufficient for the objectives of these examples to restrict £2 to con-

sist of two values, say, ',, and w 2" The components of _1l were given values

which might be considered representative of a relatively slow-learning popu-

lation of students,while the components of _• were given values that might

represent a relatively fast-learning population of students. Recall that each

parameter point n in the two-concept teaching process under consideration has

10 components, i.e.,

= gA,1 gB, OA, GAB, 0 B'0BA'P4(ýA;'ýB)I}'P fl(CA'•B)I 'pf(ýA' CB) 1'Pý(CA'CB)111
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In each of the five design problems which follow, these values were chosen to

represent the population of slow-learning students, a,- and the population of

rapid-learning students, 242:

_= [o,o,.40,.50,.10,.-20, .50,.25,.25,01

and

"'= [0,0,.80, .90, .60, .80,0, .25, .25, .50]

The choice of the value 0 for the probabilities of guessing correct

responses, gA and gB' was made in order to make the resulting best strategies

somewhat more intuitively clear. This choice has relatively minor effects on

the nature of the computations. Values of the other components of these two

parameter points were picked so that the probability distributions on the

sequences of these two processes would be well separated. Furthermore, the

values of these components were also deliberately chosen at levels which would

allow the effects of sequential experimentation to show up even though the

experiments are truncated at the small number, 3 trials.

Computation of probabilities of sequences in the extensive form

The matrix operator computational apparatus which was outlined in Section 3

offers a relatively simple method for computing the probabilities of the sequences

required for the backward induction solution. The two parameter points _o1 and

.. each provide the values necessary to define a vector of initial state

probabilities, two matrices of transition probabilities (one for item A trials
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and one for item B trials) and four diagonal matrices of conditional response

probabilities. That is, given an _N (h = 1,2) the following matrices are defined:

P1, h' PR = DA'hPAh, PA~h = D AhPAh,A,h Ah

Bh DBhPBh, ' DBh PB,h"

In addition to these matrices, two vectors which will determine the

probabilities of nature's being respectively in the states C* = (CA, CB) and

(•A, B)U(CA,'B)U(•A, CB) will be defined; let

U= [0,0,0,1]

and
j•'t [1,1,1,0].•

Finally, let a1' = [y(1,92] be the vector of prior probabilities that nature

is in the state -1i or uý.

A representative pair of plays from the extensive form of this 3-trial

teaching experiment will be considered. For example, the following two plays

or sequences are representative of the class of longest plays in this game:

[(A, R-)I, (A, R),(B, Rp)3, (ac),(*4

[(A, RA.)I, (A, RA)2, (B, KB)3, (a c)4' (C*)4]

If it were certain that a student whose responses were described by the above

sequences was from the population wl, then the probability of the first sequence

would be given by

P'1 , PRR BR I- ' A,l A,I B,I-'
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while the probability of the second sequence would be

pl' F-'1 P R1pR U.-1, A,1 A, B1

On the other hand, if it were certain that the population _i obtainedthe

probabilities of the first and second sequences would be given respectively by

-1,2 P P P -A,2 A,2 RB, 2

and

Pt  P P P U.Z-1,2 A, 2  RA, 2  RB,2-

These computations represent the situations where the prior distributions

are:

E' = [1,0) and n.= [1,0].
1i -1 2

For an arbitrary prior distribution vector Yr' 'l,iV 2,ji' the marginal

probability of the first play is obtained by computing the weighted sum

A, 1RA, 3,1  "2,( 1 , 2 
1  A , 2 hRB,2

and the probability of the second play is obtained by computing the weighted sum

PR PRA~ + it 2,i(E4, 2  A,2 A, P U
,A, , A, 2 A, 2

These illustrative computations should be sufficient to indicate the

general scheme for computing the probability of each play in the extensive

6 form of this game. It should also be evident from these illustrations that

the extension of this game from the case of 2 populations to m populations
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should not increase the computational effort beyond feasible bounds if m is

not too large (perhaps in the range 10 to 25).

Description of the cost function

In these examples of solution for best designs, the simple case of

constant cost of experimentation for each trial will be considered. It

was found that a cost of .1 unit per trial was suitable to reveal the

effects of sequential experimentation in these examples. Since the costs and

losses in these problems need to be measured along some common scale, for

the purposes of these illustrations, a scale will be used whose unit will

arbitrarily be called a utile.

Thus, the complete cost function used in these examples, is defined by

the following table:

t 1 2 3 4

c(t) 0 .1 .2 .3

Best designs when losses are expressed symmetrically in terms of errors

The basic loss function which will be considered throughout the five

examples to follow is the loss function common to two-action decision problems.

In the statistical literature the most frequent case of such a two-action

problem is the testing of a simple hypothesis against a simple alternative.

The restrictions on the terminal decision functions which have been

imposed on these teaching experiments lead to the determination of two

loss matrices. At the level of the terminal decisions for "trial n + 1"
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(in these examples, Trial 4") the two actions a and a- are permitted. Con-c c

sequently, at this level the following loss matrix obtains:

Terminal Action
t oarState of Nature ac c

C* 1

00

On the other hand, only the terminal action a has been chosen to be permissiblec

at trials 1,2,...,n in this teaching experiment; thus, the loss matrix which

is applicable at these trials is the first column of the above matrix.

Two examples of best teaching strategies were computed using this familiar

loss function. The principal motivation in solving for these two best

strategies was to highlight the fact that one must consider the characteri-

zation of the experimenter's losses very carefully otherwise one will arrive

at strategies which may be best in terms of minimizing the specified risk

but hardly could be considered best in terms of representing an acceptable

teaching strategy.

Example 1: Best Design for a Rapid Learners Population

In this first example, the prior distribution 1C. 0[0,1] was assumed. The
- .2

parameter points -1 and cand the constant cost unction c(.) with increment

.1 utile are used throughout all five examples. This example and the next

example assume the loss function which has been described above.

To evaluate the payoff of each play in the extensive form of this teaching

experiment to player 2, one must consider both the sampling cost and the terminal

loss associated with the play. These components of the payoff can be collected
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into four matrices, say, L1(1),LI(2),L 1 (3) and L1 (4) which correspond to the

sets of plays which respectively use 0 trials, 1 trial, 2 trials, and 3 trials.

These matrices are defined below:

a a•
c c

.3 1.3 C*

L1(4) - 1.3 .3

while

a a a
c c c

[J21.11 C* C
L (3) . L(2) L (1)

1C* 1. C* 1*

The expected payoff to the experimenter of the representative pair of

plays, [(A,^RA)I. (A, RA) 2, (B,RB) 3, (ac) 4, (C*) 41I and [(A,RA)l, (A, RA) 2,

(B,RB) 3 , (a) 4 , (C*) 4 ] is obtained by computing:

R1+.3 "P'l P R P R) "3Up

1.3(lll , A, 2 P R B,2 2 P B, 2-A,2 "A, 2 BR,2

This computation represents a typical "averaging out" calculation required in

the course of the backwards induction process. It should be evident that

these computations would be only slightly more complicated if an arbitrary

prior distribution vector had been assumed. The expected payoff would then be

computed as:

1.3 [l,i(1,1 PA,l 1RA,l B, - ' A PA, 2P R B,P 2
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+,*, 1 ,'A, 1 A,, B, 1 0 + lA,2 RA2 P RA , 2

A computational procedure for solving for the best strategy in these

exEmples was set up and carried out on a desk calculator since the computational

effort required did not merit the development of a computer program. The

resulting best design for this population of students and this familiar loss

function is graphed in Figure 7. Two features of this design require some

discussion although in general the design seems to represent a "reasonable"

teaching strategy.

The branches [(B,1)l, (B, RB) 2, (ac) 3] and [(B, )1 , (B, ) 2, (B, RB) 3 , (a)d4]

of the tree of this pure strategy may appear to represent unusual terminal

actions at first glance, but inspection of the set of particular values of

initial state probabilities in this example confirms the appropriateness of

these actions. Since gB = 0 in these examples, the response B at Trial 1

indicates that this student must have initially been in the subpopulation

whose initial state of conditioning is (CA,' CB) (the initial probability of the

only other applicable state (CA' C'B) having been assumed to be zero). Therefore,

when the correct response RB occurs at trial 2 or 3, this is errorless evidence

that the student is now in the desired state (CA, CB).

The branch [(B,RB)l, (A, A) 2 , (ac) 3 of this tree will be found to be

a situation where there is some probability of being in error by taking this

terminal action in the face of the evidence from the responses (RB)l and (RA) 2 ,

but the probability of making an error is so small that it does not pay to

use another trial. The branch [(B,RB)l, (BRB) 2, (B,RB)3, (ac) 4 represents
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a circumstance where it paid to use all 3 trials but where it is now best to take

the terminal action a at "Trial 4" since the probability of the studentsC

being in the state (CACB) at "Trial 41' is sufficiently high.

Example 2: Best Design for a Slow Learners Population

The only difference between Example 2 and Example 1 is that the prior

distribution vector = [1,0] is used instead of the vector it . That is,

in the present example one assumes at the outset the student is definitely

from the slow-learning population instead of from the rapid-learning population.

The tree of the best design for this example is given in Figure 8.

Although this is the best strategy for this particular population under the

conventional loss function being employed, most educators would probably

question the "bestness"of this strategy from the standpoint of appropriate

teaching objectives. One might describe this strategy as a "defensive teacher's

strategy"--the apparent objective being to give the hardest possible sequence

of items in order to conclude with minimum risk that most individuals from

this population did not learn the required concepts.

This anomalous result, it can be shown, occurred primarily because of

the inappropriateness of the considered loss function for decision problems

such as this teaching situation. One must look particularly at the preferences

for taking the two terminal actions ac and a,. implied by the loss matrixcc~ c

The backward induction solution is started by pairing plays of the game with

common histories up to the last vertex of the play, but one member of the pair

has the choice N*, and the other member has the choice C* as the value of its
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terminal vertex. Let h be the generic symbol to stand for a representative

history along a play of the game up to the last vertex and then consider the

conditional probabilities AT(C*) 4ILI and Af(*) ILI. The set of all these

conditional probabilities for the representative pair of plays [h,(C*)] and

(h, C* is shown in Figure 9. The graph of the set of these representative

pairs of conditional probabilities is shown to be the line connecting the

points (0,1) ani (1,0) in the plane.

The best terminal action among the pairs of these longest plays in the

game is determined by computing the expected loss over the distributions

defined on the states C* and C* for the actions and a and a•-. The best action
c c

at the level of the outermost vertices of the class of longest plays is then

the action which minimizes this expected loss. Consequently, it can be seen

that the loss matrix L1 (4) implies a partition of the sets of conditional

probabilities pT(C*) 1 Ih} and J(•*) lh} into three subsets.

(1) Region of preference for the action, a•
c

-- the terminal action a will be best when p, (C*)41hj < .5c

(2) Indifference point

-- the terminal actions a and a". are equally preferred when
c c

(3) Region of preference for the action, a
c

-- the terminal action ac will be best when pf(C*)41ih}• >.5

I-
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1.00.
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0°> PFC*)i4u1h9

Figure 9
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In Example 2, the initial-state distribution and the learning-rate para-

meters are such that, for practically all of these pairs of plays of the game,

the conditional probabilities W(C*)4 h and C*) Ik fall in the region of

preference for the action a-. Consequently, the best strategy, so to speak,c

seeks out the item allocation scheme which will maximize the conditional

probabilities {(*)I h in the various pairs of longest plays of the game in

order to minimize the overall Bayes risk of the design.

Best designs when losses are expressed differentially in terms of errors

It would appear that the preference regions for the terminal actions

implied by the definition of the loss matrix L1 (3) do not reflect the prefer-

ences for these terminal actions that sound teaching objectives would dictate.

It seems safe to say that most educators would prefer to expand the region of

preference for the terminal action a c; that is, they would prefer to conclude

that a student had learned the required concepts unless the probability that

the student had mastered the materials was quite small.

A simple modification of the loss matrix L (3) will be considered in the

next three examples which leads to more appropriate strategies from the stand-

point of teaching objectives. Let the preference partition of the sets of

conditional probabilities {(C*)4Ih}, {(r*)4ih} be prescribed in the following

alternative way:

(1') Region of preference for the action a

-- the terminal action a-% shall be best when p{(C*)ih} < .2c C)
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(2') Indifference point

-- the terminal actions a and a-. are equally preferred when
C C

pf(C*)4 4Ih= .2

(3') Region of preference for the action, a

,--the terminal action a cshall be best when pf(C4 I)Ih -?>.2
cc

The choice of the particular alternative indifference point (.2, .8) was made

only to illustrate the general direction of change in the preference partition

which should be followed.

There are, of course, many ways to alter the loss matrix L1((4) which will

satisfy this alternative preference partition. However, it seems especially

suitable to alter only the second column of the matrix to preserve the common

definition of losses in taking the action a over the trial numbers 1,2,3, andC

4. Thus, to satisfy this preference partition the loss plus cost matrix

L2 (4) will be used, where

a a^.
c c

.3 1.3 C*
L (4)
2 1.3 1.05 N

The vectors Ll(1), L1 (2), and L 1 (3) in the following three examples are not

changed.

Example 3: Best Design for a Rapid Learners Population

The conditions in this problem are identical to Example 1 with the single

exception that the L2 (4) matrix is used instead of LI(4). The best design for
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this example turned out to be the sane design found to be best for Example 1.

Since most of the conditional probabilities Pf(C*) 4 1h} for the various

histories h exceeded .5 at the end of the third trial, it should not be too

surprising that the best design for Example 3 turns out to be identical to the

best design in Example 1. (The detailed illustration of the solution for the

best single-trial strategy which was shown in Table 2.1 and Table 2.2 used the

parameters, cost function, and loss function of Example 3. One may derive the

values in those tables which were presented as given numbers by performing the

required computations using the input values defined for Example 3.)

Example 4: Best Design for a Slow Learners Population

The conditions in this problem, other than the substitution of the L (4)
2

matrix for the L1 (4) matrix, are identical to the conditions of Example 2. The

tree of the best design which resulted for Example 4 is shown in Figure 10.

Comparison of the trees in Figure 8 and Figure 10 will reveal that the modifi-

cation of the loss function carried out in the L2 (4) matrix has had a marked

effect on the structure of the best strategy. Foremost among the effects one

observes is that the new best strategy employs item allocations which lead,

with a single exception, to the terminal conclusion that the student has

mastered the concepts, the conclusion a . Also the general rule is detectedc

in this strategy that, after starting with a B item one switches to A items

following a correct response, and, for both A and B itmes, one stays with the

same type of item if an incorrect response occurs. This procedure intuitively

would seem sound in view of the fact that the guessing probabilities, gA and

gB, are assumed to have the value 0 in these examples.
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"Trial 4" - Expr's Choice a- a a a a a

C Ic C4 c q C

Response uA RA ?A RA

Trial 3

Expr's Choice B A

TResponse A

Trial 2

Expr's Choice B A

TResponse B

Trial 1

Experimenter' s Choice

Example 4: Tree of the Best Design

Figure 10
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Example 5: An Equal 11dxture of the Populations I and

To further highlight the role of the prior distribution in determining

the structure of the best strategy, the vector of prior probabilities, say,

I' = [.5,.5),was used in this example. The other input values for this
-i 3

example were identical to the conditions of Examples 3 and 4.

The tree of the best design for this example is shown in Figure 11. The

item allocation configuration which occurs in this tree does not differ

radically from the corresponding configurations of the trees of the best

designs for Examples 3 and 4. Roughly speaking, one could also say that the

terminal actions for Example 5 agree fairly closely with those of Examples 3

and 4. The sampling plan component of these best pure sequential strategies

seems to be the component which has changed the most from example to example.

Incidental remarks about the best strategies in these five examples

It is interesting to note that throughout all five examples the best

strategies were initiated by the administration of the more difficult type B

item. Surely, this cannot represent a universal rule in these two-concept

problemsas one could easily alter this result by appropriate choice of the

initial distribution on the four states of the conditioning function. However,

in these examples,where in each case the initial probabilities of being in the

states C = (CA, •B)U(CACB) and CB = (OACB)U(CACB) are equal, the general

rule that it is best to allow more trials for exposure to Concept B than to

Concept A may obtain.

For the purpose of providing some basis of expressing the reduction in

the risk that is gained by following the optimal strategies, the Bayes risks
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of the best strategies and the risks that would occur if no experimentation

were performed have been listed for each example in Table 3 below:

Risks

No Experimentation Best Strategy

Example

1 .50 .232

2 1.00 .3775

3 .50 .232

4 1.00 .86425

5 .75 .560625

Table 3
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6. Remarks

Solutions for best designs of teaching experiments by backward induction

down the trees of the extensive form of such games were shown in Part 5.

These solutions reduce the computational effort required to obtain the Bayes

solution or best strategy for these games by an appreciable amount over the

effort demanded for sheer enumeration of the risk of each pure strategy. In

this final part of the report an outline will be given of the proof that the

backward induction teachnique does yield the strategy which is Bayes against

the prior distribution g. The role of sufficient statistics for further

reducing the computational effort to solve for Bayes strategies will then be

examined briefly. Finally some methods for determining "reasonably good"

strategies will be discussed.

Solution by Backwards Induction Yields Bayes Strategy

A formal proof that the backward induction solution technique yields a

pure strategy (eb,d) which is Bayes against the given prior distribution 'K

can be carried out by straightforward generalization of well-known proofs.

These are proofs that the backward induction technique yields the Bayes

strategy (b,d) in the sequential game involving a fixed experiment e (See

Blackwell and Girschick [4, Chapter 9] for such a proof). The extension of

the proof that the backwards induction technique which yields the sampling

plan b and terminal decision function d that is Bayes against A for the fixed

experiment sequential design problem is outlined below.

It should be noted at the outset that the sequential teaching games under 4
consideration here involve finite sets of terminal actions; consequently, at
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each folding-back step in the backward induction process it is possible to

select the terminal action a c A which actually achieves the minimum expected

terminal loss. It is the finiteness of the set of pure strategies for nature

and of the set of terminal actions which results in a Bayes solution that is

a pure strategy.

Since there are only a finite number of pure experiments e in the set of

all possible pure strategies for these truncated teaching games, one can in

principle find the Bayes solution by backward induction for each fixed

experiment e c E and then select,as the Bayes solution for the sequential

design problemthe strategy (eb,d) which has minimum risk against iT over the

set of all Bayes solutions for each fixed experiment. That is, let e V2,...

e be the set of all pure experiments possible in these truncated sequential-mn

games, m in number, and for a fixed experiment ek let (b*,d*) be the sampling

plan and terminal decision function which minimizes the risk

n

p (,T,,(bd)) =7 7 7 ct(r) + L(X~d(t,r)•IP e Trm I[K.2 -4 / ___ , L / -2k-
t=l reb aWE-- t -

Thus let the set {(e.1 b*,d*), (2 2 ,b*,d*) ... ,(emb*,d*)} represent the set of

Bayes solutions for each of the sequential games involving fixed pure experi-

ments e 1 '. 2 ,...,em. Further, let (e*,b*,d*) be that strategy in this set of

strategies which has minimum risk among the members of the set. It is clear

that (e*,b*,d*) is the Bayes solution to the sequential design problem, i.e.,

this strategy minimizes
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n

PQe~bd))= jrct7(r) + LQ"X d(t, r))ip(r cŽo, _

t=l rebt _a•

The extension of the proof that the backward induction solution for fixed

experiment sequential games is Bayes against n to proving that the backwards

induction solution in the sequential design situation also yields a strategy

which is Bayec against the prior distribution n could perhaps be made clearer

had we represented the extensive form of the sequential design game by a tree

such as the one illu-strated in Figure 12. In that figure, a tree of a 2-

trial truncated teaching game is graphed. For the two-concept model there are

8 pure experiments possible and each of these includes the possibility of

no experimentation. In the tree of Figure 12, the 8 possible pure experi-

ments have been segregated and the experimenter's initial choice set at

Trial 1 requires a choice of one of the 8 pure experiments or the choice of

the dummy experiment e which involves no experimentation. The backwards--O

induction solution process can thus be carried out separately for each of

the 8 pure experiments, and finally at the level of Trial 1, the choice of

the best sequential design is made by seeking among the best strategies in

each of the 9 experiments for the strategy with minimum risk.

The trees of the type showm in Figure 5 seemed a more efficient representa-

tion of these sequential design problems for computational purposes. The

equivalence of the games represented by the two types of trees shown in Figures 5

and 12 is easily shown by reduction of each game to normal form.
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Solutions for Best Designs in Terms of Posterior Probabilities

The best designs of teaching experiments which were obtained in Part 5

tell the experimenter what he should do for each sample sequence that may occur

in the sample space of the best experiment. In certain problems, it is possible

to obtain closed-fOrm solutions for best sequential designs by considering the

space of posterior distributions of the parametersgiven the various sub-sequences

of sample values. For example, when there are only two states of nature and

two terminal actions, then the Bayes strategy is equivalent to the sequential

probability ratio procedure. Particularly when the components of the sample

sequences are independently distributed, the sequential probability ratio test

can be readily determined by finding two critical values which partition the

unit interval into three regions. These critical values can frequently be solved

for by closed-form procedures.

Other sequential games with finite and equal numbers of states of nature

and terminal actions plus special types of loss functions can be solved by

fairly straightforward methods. In the examples considered in this paper,

there did not appear to be any special advantages to seeking for best design

in terms of the space of posterior distributions rather than in the sample

space of the observable outcomes, because of the loss functions employed and

because of the numbers of states of nature distinguished (n+2 states). We are

currently examining some special cases of sequential strategies in teaching

programs, for which it appears that closed-form solutions may be obtainable in

terms of decision regions in the space of posterior distributions on the para-

meters. Results of these studies will be published in subsequent reports.
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Role of Sufficient Statistics

D1 many statistical games it is possible to partition the sample space

into sets of outcomes such that all the elements in a given cell of the

partition are, in a certain sensej equally informative about the parameters or

states of nature. Such partitions of the sample space are called sufficient

partitions of the sample space. A standard definitionof a sufficient parti-

tion, say S, of' a sample space X is to call a partition S of X sufficient if

for every subset A of X and for every cell or subset s of the partition S for

which p(s] > 0, the conditional probability p(AI_• s) is independent of the

parameter points w e 0. An alternative, equivalent definition stated in the

language of Bayesian theory is that a partition S of the sample space X is

sufficient if the posterior distribution on f, given that an outcome x is an

element of a cell s of S is the same as the posterior distributiors given the

actual value of the outcome x for every prior distribution o on a and for

every outcome x such that 7'p(x _1Wit (W) > 0.

W I

A function or random variable T whose domain is a sufficient partition S

of a sample space X is called a sufficient statistic. Since the elements of

many sets. can be put in one-to-one correspondence with the cells s of S, a

sufficient partition determines many sufficient statistics. The range of a

sufficient statistic T is a new outcome space generated by T. In many situ-

ations, the range space of T has a considerably smaller number of elements

than the original outcome space X. When this kind of reduction of the
/

o_ number of relevant outcomes to be considered in the representation of the
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tree of the extensive form of a sequential design game is possible through the

identification of sufficient statistics, the. computational effort to carry out

the backward induction solution will be correspondingly reduced.

It is evident that even for models of teaching processes of the simple

type that have been considered in this paper, the computation required even

by the backward induction process will rapidly become excessive with increase

in the truncation trial number n. For some models of teaching process which

admit of coarse sufficient partitions of the sample spaces, it may be possible

to extend the truncation trial number to a level approaching common practice

in certain types of teaching experiments. Many models of learning or teaching

processes take infinite-dimensional sets for their outcome spaces. Both the

backward induction solution concept and the concept of reduction of the sample

space to the range space of a sufficient statistic must be modified in the

case of infinite-dimensional outcome sequences.

Raiffa and Schlaifer [18] have very comprehensively examined a large

number of statistical decision problems involving some familiar probability

distributions by representing these problems as games in extensive form. They

do not consider problems involving time-dependent processes, such as the learn-

ing process being considered here, but they do make several observations about

solving statistical games in extensive form that are pertinent also to

these stochastic process problems. These authors emphasize two features of

a statistical game which markedly simplify the computations required to deter-

mine best strategies by the backward-induction-solution technique:
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(1) The existence of sufficient statistics of fixed, small dimensionality

(essentially this condition on a sufficient statistic T means that

its range space should have a small number of elements).

(2) The existence of prior distributions on a which have a property

that they call "being a natural-conjugate" of the conditional distri-

butions of the sufficient statistics given an experiment e and parameter

T.

Their second condition results in simplification of the computation of the

expected losses associated with each individual play of the game or each value

of the sufficient statistic. Raiffa and Schlaifer refer to this phase of the

solution as terminal analysis. It would appear that the probability distri-

butions on the outcome sequences, or sufficient contractions thereof; of many

current learning nmodels are not apt to admit of conjugate prior distributions

at least of reasonably simple forms.

Relating Structures of Best Designs to Characteristics of the Parameter Space

The backward induction technique is a very generally applicable method of

solving for best designs in teaching experiments; however, without some

further analysis of the relationship of the structures of best designs to

characteristics of the parameter space of these experiments one would have

little basis for predicting general directions of change in the designs as

changes are made in the parameter space. For example, some general theory

should be developed concerning the relationship of changes in the item-

allocation portion of the structure of a strategy as one changes the

values of the initial distribution on the states of the conditioning function,
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or the values of the various learning-rate parameters, or the values of the

probabilities of guessing correct answers.

In the illustrations of designs of teaching experiments given in Part 5

the parameter space Q was restricted to contain only two elements. Thus in

these illustrations the design problem was viewed in part as a simple classi-

fication problem (classifying each individual student as a member of one of

two populations) along with other objectives concerned with deciding when a

student had mastered the concepts in the teaching program. For many practical

applications of these design techniques it may be adequate to define the

parameter space 2 to consist of a small, finite number of "well-separated"

points. In such applications, one would anticipate that an experimenter

could assign prior probabilities directly to each element of il for every

student who is brought into the automated teaching situation.

It may frequently turn out, on the other hand, that the representation of

0 as a small, finite set is not practically adequate nor analytically con-

venient. One may find, for example, that it is much more appropriate to

expand C2 so that the experimenter can specify his prior distributions by

simply specifying a few parameters of distributions over i. Raiffa and

Schlaifer [18] discuss this mode of assignment of prior distributions at

length and specify a number of desiderata that prior distributions should

satisfy in order to make the solutions for best strategies tractable.

Relating Structures of Best Designs to Fofm of Loss and Cost Functions

It is unfortunate that the structure of best strategies in statisti-

cal games often vary quite sensitively with changes in the specification



"9 April 1963 113 TM-1161/O00/OO

of the loss and cost functions. Again, it would be desirable to examine

these learning or teaching experiment situations to supplement solution

techniques with some general analysis of the relationship of directions

of changes in the structures of best designs to changes in the loss

and cost functions.

Approximations to Solutions When the Numbers of Trials Are Large

If one is faced with solving for a best design in a problem involving a

large number of trials where it is not possible to reduce the many branches of

the tree to a more feasible number, one might hope to get a good approximation

to the best design by considering solutions for best strategies for a number

of subproblems consisting of "looking forward" as many trials as computational

time and costs will allow.

For example, in problems like those considered in Part 5,if costs of

experimentation allowed for continuation through, say, 30 trials but the

computation of best strategies could only be afforded for the 3-trial sub-

problems one could put together an approximation to the best strategy with

(at most) 10 pieces or substrategies. In such situations, one would terminate

experimentation at any point where the terminal decision was made that the

subject had mastered the concepts, ac, but a continuation for another three

-trials would be made at any terminal vertex where the decision a• was made.

In Example 5 of Part 5, it is found that only a single terminal vertex

would lead to such a continuation. The sequence associated with that vertex

is ((B, )I, (B,%) 2 , (B,?) 3 , ( 4a)). In this circumstance, one could deter-
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mine a continuation that would be the best strategy for the next three trials by

computing the posterior distribution on i given this outcome sequence; e.g.,

n1 T~(,)(B, B, ( B, (B~ 3  = ~ B,), (B,~),(,)i~

~1 ;(B,k) 1 , (B, ý) 2 , (B,B)~ 3L4 + 7r2 pf(B,?ý)1 , (B, ý) 2 , (B,ý) 3i}

In Example 5 the prior distribution was assumed to be A' (.5,.5); thus when

these and the other known values are substituted into the right-hand side of

this expression, one obtains

(B ?(B 1,(,.)1(,R ý 5(.565) =.983;

•5(.565) + .5(.010)

consequently, _ J(B,?) 1 ,(B,i ) 2 , (B, )3} = .017. Using this posterior

distribution of the parameters, one could then seek the best strategy for the

next three trials by the techniques of Part 5.

In some circumstances, one miglht also reduce the computations for

finding best strategies in truncated teaching experiments involving a

large number of trials by redefining a trial to include a block of items.

The success of such reductions of the computational difficulties would of

course hinge largely on what effects such aggregations had on the relative com-

plexity of the probability distributions of the sequences of item blocks. Other

reductions of the complexity of these problems suggest themselves too; promin-

ently, the various objectives which one may try to achieve can be modified in

a number of ways to simplify the task of determining best terminal actions.
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